# Comparison of Simulations for the NMSSM No-Lose Theorem

### Andrea Thamm University of Edinburgh and LAL Orsay 29/03/2010

Supervisor: Dirk Zerwas, LAL Orsay

# Outline

- 1. Introduction
- 2. EGHM Analysis
- 3. EGHM Simulation versus ALS
- 4. Conclusion

# Introduction

- MSSM: SM + Higgs doublet + SUSY particles
- NMSSM: extends MSSM by superfield
  - generates µ parameter naturally (Higgsino mass parameter)
- Extended Higgs sector:

| MSSM                                                              | NMSSM                                                   |
|-------------------------------------------------------------------|---------------------------------------------------------|
| h <sup>0</sup> , H <sup>0</sup> , A <sup>0</sup> , H <sup>±</sup> | h <sub>1,2,3</sub> , a <sub>1,2</sub> , h <sup>±</sup>  |
| h <sup>0</sup> → A <sup>0</sup> A <sup>0</sup> rare               | h <sub>i</sub> → a <sub>j</sub> a <sub>j</sub> possible |

- Parameter sets where standard Higgs searches fail?
  Yes > new channel
- 10 different parameter sets (EGHM: Ellwanger, Gunion, Hugonie, Moretti, 2003)

#### 1. Introduction

# **Detection Mode**

- WW  $\rightarrow$  h  $\rightarrow$  aa
- Channel:



| h <sup>0</sup> |                                                | 119.5 GeV |
|----------------|------------------------------------------------|-----------|
| mass           | a <sup>o</sup>                                 | ~ 30 GeV  |
|                | h <sup>0</sup> → a <sup>0</sup> a <sup>0</sup> | 0.9909    |
| BR             | a⁰ → bb                                        | 0.9899    |
|                | a <sup>0</sup> → τ+τ-                          | 0.0069    |
|                | h <sup>0</sup> → bb τ+τ <sup>-</sup>           | 0.0135    |

- Signature:
  - -2 fwd jets
  - $-2\tau \rightarrow \parallel + 4\nu$
  - min. 2 central jets

1. Introduction

### The Status

|                    | EGHM, 2003                                 | Stephanie Baffioni (ATLAS) |
|--------------------|--------------------------------------------|----------------------------|
| Event<br>Generator | Herwig                                     | Pythia                     |
| Simulation         | homemade for leptons,<br>CALSIM, GETJET by | ALS                        |
| Analysis           | F. Paige, analysis                         | similar analysis           |

- Aim: reproduce EGHM's results
- Observation: large differences in signal cut efficiencies
- Order of magnitude ~100

1. Introduction

# This Study

| Event<br>Generator | Herwig   |  |
|--------------------|----------|--|
| Simulation         | EGHM ALS |  |
| Analysis           | EGHM     |  |

- Understand cut efficiencies on signal (ignore background)
- Event by event comparison
- Interface to ALS
- Translate analysis to ALS
- Identify differences
- Quantify influence of calorimeter simulation/reconstruction on result

#### 2. EGHMs' Analysis

# First Analysis: Cut Flow

| EGHM                  | ALS     | EGHMs' Analysis |                                            |
|-----------------------|---------|-----------------|--------------------------------------------|
| N <sub>events</sub> = | 2685393 |                 |                                            |
| 1562539               | 11331   |                 | reconstructed $\geq 2$                     |
| 47766                 | 1803    | Leptons         | P <sub>T</sub> > 10 GeV                    |
| 31270                 | 1250    |                 | opposite sign                              |
| 24142                 | 348     |                 | ≥ 4                                        |
| 21761                 | 306     |                 | forward: $\eta > 0$ , backward: $\eta < 0$ |
| 15633                 | 234     |                 | $\Delta \eta > 4$                          |
| 14274                 | 225     | Jets            | $\tau$ invariant mass reconstruction       |
| 10053                 | 152     |                 | b-jets (central): P <sub>T</sub> > 40 GeV  |
| 8380                  | 114     |                 | forward: P <sub>T</sub> > 25 GeV           |
| 6947                  | 92      |                 | backward: P <sub>T</sub> > 25 GeV          |

|       | No. of events |     |
|-------|---------------|-----|
| Point | EGHM          | ALS |
|       | ratio         |     |

# **Blind Application**

• all points:



### **Acceptance Efficiencies**

| channel               | generated                     | accepted |     | efficiency in % |           |
|-----------------------|-------------------------------|----------|-----|-----------------|-----------|
|                       |                               | EGHM     | ALS | EGHM            | ALS       |
| bbbb                  | 2593378                       | 6684     | 51  | 0.258(3)        | 0.0020(3) |
| <b>bb</b> τ+τ-        | 45787                         | 159      | 40  | 0.35(3)         | 0.087(14) |
| τ+τ-τ+τ-              | 188                           | 1        | 0   | 0.5(5)          | 0.0       |
| glu glu               | 21381                         | 25       | 1   | 0.12(2)         | 0.005(5)  |
| no aºaº               | 24659                         | 78       | 0   | 0.32(4)         | 0.0       |
| N <sub>events</sub> = | N <sub>events</sub> = 2685393 |          |     |                 |           |

- EGHM: bbbb and  $bb\tau^+\tau^-$  efficiency same order of magnitude
- ALS:  $bb\tau^+\tau^-$  well distinguished as it should be

### **First Check**



29/03/2010

# Lepton Reconstruction

- Compare lepton acceptance eventwise
  - identify  $\Delta R_{I} < 0.2$
  - every accepted ALS lepton also accepted by EGHM's code
  - all further leptons found by EGHM within  $\Delta R_{Ii} < 0.2$  to jet
- EGHM: any lepton
- ALS: only isolated leptons
- Conclusions
  - differences in lepton sector fully understood
  - EGHMs' results too optimistic

| Accepted by EGHM                        | 550000 |
|-----------------------------------------|--------|
| Accepted by ALS                         | 98000  |
| EGHM, ALS leptons: $\Delta R_{I} < 0.2$ | 94738  |



# Jets: P<sub>T</sub>

| EGHM   | ALS    | Cuts                           |
|--------|--------|--------------------------------|
| 70.4 % | 67.6 % | b-jets: $P_T > 40 \text{ GeV}$ |
| 83.4 % | 75.0 % | FWD: $P_T > 25 \text{ GeV}$    |
| 82.9 % | 80.7 % | BWD: $P_T > 25 \text{ GeV}$    |

- Moved internal ALS cut to 15 GeV
- $\Delta\eta$  the same
- Smaller differences



### Jet Reconstruction

| EGHM   | ALS    | Cuts            |
|--------|--------|-----------------|
| 77.2 % | 27.8 % | Number $\geq$ 4 |

 EGHMs' code: only two leptons with highest P<sub>T</sub> marked
 → leptons incorrectly reconstructed as jets

|    | $h^0 \rightarrow a^0 a^0$ | 0.9909 |
|----|---------------------------|--------|
| BR | a⁰ → bb                   | 0.9899 |
|    | a <sup>0</sup> → τ+τ-     | 0.0069 |



### Conclusion

- Calorimeter simulations differ in
  - Lepton identification
  - Jet reconstruction
- EGHM: results too optimistic
  - Dominant bbbb signal for  $bb\tau^+\tau^-$  analysis
  - Non-zero efficiency for non-isolated leptons
- Results confirmed by EGHM
  - No special treatment of bbbb final states