Exceptional Unification and intermediate Symmetries GDR Terascale Meeting, Saclay, 2010

Alexander Knochel

in collaboration with F. Braam, C. Horst, J. Reuter, D. Wiesler

Uni Freiburg

29.03.2010

Partly based on:

F. Braam, AK, J. Reuter, arXiv:1001.4074 [hep-ph]

Grand Unification

Why do we study GUTs?

• Gauge couplings approach each other (MSSM: meet) at high energies

• SM particles fit into smallest representations of simple groups

 $\begin{array}{c|c} SU(5): & d^{c}, L_{L} = \mathbf{5}, Q_{L}, u^{c}, e^{c} = \mathbf{10}, \nu^{c} = \mathbf{1} & H^{u}, H^{d} \in \mathbf{5} + \mathbf{\overline{5}} \\ SO(10): & d^{c}, L_{L}, Q_{L}, u^{c}, e^{c}, \nu^{c} = \mathbf{16}, & H^{u}, H^{d} \in \mathbf{10} \end{array}$

Charge quantization...

Higgs Triplets and Proton Decay

The $\mathbf{5} + \overline{\mathbf{5}}$ also contain color charged exotics D, D^c . Higgs coupling in \mathcal{W} : $\mathbf{\overline{5}} \mathbf{10} \mathbf{\overline{5}} + \mathbf{5} \mathbf{10} \mathbf{10}$

- Exotics spoil unification, proton decays!
- Strong constraint, need Higgs doublet-triplet splitting to suppress PD, still no observation
- PD the only experimental signature of unification?

A. Knochel (Uni Freiburg)

If new exotic matter not fitting into MSSM is found e.g. at LHC

- An unexpected chance: study Grand Unification at the Collider?
- E₆ inspired models

E₆ and Higgs-Matter Unification

- E_6 is contained in $E_8 \times E_8$ ocurring in heterotic compactifications
- Contains standard groups

 $SU(5) \subset SO(10) \subset E_6$

• Matter and Higgs in the fundamental

- NMSSM-Like SM Singlets!
- Higgs-likes in every generation!
 Doublet-Triplet-splitting → Doublet-Triplet-Decouplet splitting?

Exceptional Supersymmetric Standard Models

Recent Proposal (Reuter, Kilian '06)(King et al '06):

9 Postulate unknown E_6 breaking mechanism to intermediate symmetry,

e.g. $E_6 \longrightarrow SU(4)_C \times SU(2)_L \times SU(2)_R \times U(1)_\chi$

2 Keep all E_6 d.o.f. (apart from ν^c) at low energies (extra U(1))

- Intermediate breaking restores unification
- Planck scale unification possible
- Phenomenological superpotential subset of full E₆ potential

A. Knochel (Uni Freiburg)

The *E*₆ Superpotential

What is the most general renormalizable superpotential for 27 Matter?

 $\mathcal{W} = \mathbf{27} \otimes \mathbf{27} \otimes \mathbf{27}$

This includes:

$$27^{3} \sim \underbrace{SH_{u}H_{d}}_{\mu} + \underbrace{STT^{c}}_{Mass} + \underbrace{HQ_{L}Q_{R} + HL_{L}L_{R}}_{Matter Mass} + \underbrace{T^{c}Q_{L}L_{L} + TQ_{R}L_{R}}_{Leptoquark} + \underbrace{TQ_{L}Q_{L} + T^{c}Q_{R}Q_{R}}_{Diquark!}$$

- Proton decay, either LQ or DQ terms have to go...
- FCNCs from extra Higgs multiplets: \mathbb{Z}_2 **H** Parity

The E_6 Superpotential

What is the most general renormalizable superpotential for 27 Matter?

 $\mathcal{W}=\mathbf{27}\otimes\mathbf{27}\otimes\mathbf{27}$

This includes:

A. Knochel (Uni Freiburg)

NMSSM-like Model, but

no $\mathcal{W} \sim S^3 \longrightarrow$ D-Term Potential from U(1)'

otherwise, domain walls \rightarrow nonrenorm. \mathbb{Z}_3 violating operators

- ν^{c} masses from D=5 operators at intermediate breaking
- Strong constraints from Z Z' mixing,

 $\langle S_3
angle \gtrsim 1.5$ TeV, $m_{Z'} \gtrsim 600$ GeV (King et al, '07)

- 6 standard neutralinos: $\tilde{H}, \tilde{h}, \tilde{\chi}_0^1, \tilde{\chi}_0^2, \tilde{S}_3, \tilde{B}'$
- H-odd un-higgs(inos): $\tilde{H}_{1,2}, \tilde{h}_{1,2}, \tilde{S}_{1,2}$; mass from $S_3H_iH_j + S_iH_jH_3$
- Vanishing 1-loop QCD β function! gluino tends to be light in sugra models (c E_6 SSM, King et al, '08)
- Two parities, complex DM structure possible!

イロト イ団ト イヨト イヨト 三日

Assume vanishing DQ couplings + large LQ couplings

Assume vanishing DQ couplings + large LQ couplings only consistent (perturbative) for $SU(4)_C \rightarrow SU(3)_C \times U(1)_{B-L}$ at $\sim \Lambda_{Pl}$,

(Braam, Reuter, Wiesler '09)

A B F A B F

Unsatisfactory points

- All these models assume an unspecified E_6 breaking mechanism
- \bullet Justification to employ phenomenological, E_6 violating Superpotential

More explicit roads to a realistic low energy ESSM

Possible Roads

- Spurion analysis: $\mathcal{W}\sim 650 imes 27^3 \stackrel{\langle 650
 angle}{\longrightarrow} \mathcal{W}_{ESSM}$
- "Quantum Gravity":
 - Orbifold compactifications
 - Scherk-Schwarz/Hosotani mechanism

String-inspired Orbifold Compactifications (Braam, AK, Reuter, '10)

Heterotic string models: D = 10, $E_8 \times E_8$ (or SO(32))

- Huge landscape of different possibilities
- Model building simplification: Assume partial compactification

$$D = 10, E_8 \times E_8, \mathcal{N} = 4 \longrightarrow D = 6, E_6, \mathcal{N} = 2$$

- Explicit orbifold compactification $D = 6 \rightarrow D = 4$ Adress breaking to $\mathcal{N} = 1$, $SU(3) \times SU(2)^2 \times U(1)^2$ or Pati-Salam
- See which *E*₆ features are preserved...

Field-Theoretic Orbifold Compactification

E6 Breaking on a torus

(日) (同) (三) (三)

The \mathbb{T}^2/Γ Orbifolds

Modding out a $360^{\circ}/n$, i.e. \mathbb{Z}_n rotation:

Orbifold breaking: Associate θ with a shift V in the gauge group algebra

$$|\mu
angle \stackrel{ heta}{\longrightarrow} e^{i \, V \cdot H} |\mu
angle$$

Here: only abelian shifts, rank is preserved

Further breaking and unification

(日) (同) (三) (三)

E_6 breaking \mathbb{Z}_n shifts with $G_{LR} imes U(1)_\chi \subset H$

\mathbb{Z}_2	Subgroup H	Shift 2 \overline{V}
	$SO(10) imes U(1)_\chi$	(1, 1, 0, 1, 1, 0)
	$SU(6) imes SU(2)_R$	(0,0,1,0,0,0)
	$SU(6) imes SU(2)_L$	(1, 1, 1, 1, 1, 0)
\mathbb{Z}_3	Subgroup H	Shift $3\overline{V}$
	$SU(3)_C \times SU(3)_L \times SU(3)_R$	(0,0,1,-1,0,0)
\mathbb{Z}_4	Subgroup H	Shift 4 \overline{V}
	$SU(5) imes U(1) imes SU(2)_L$	(-1, -7, -1, 5, -7, 0)
	$SU(5) imes U(1) imes SU(2)_R$	(6, -2, 5, -4, -2, 0)
	$SU(4)_C imes SU(2)_L imes SU(2)_R imes U(1)_\chi$	(-7, 3, 2, 9, -1, 0)
	$SU(3)_C imes SU(3)_L imes SU(2)_R imes U(1)$	(0,0,1,2,0,0)
	$SU(3)_C imes SU(3)_R imes SU(2)_L imes U(1)$	(-1, 1, 1, 1, 1, 0)
\mathbb{Z}_6	Subgroup H	Shift 6 \overline{V}
	$SU(3)_C imes SU(3)_L imes SU(2)_R imes U(1)$	(-8, -4, 7, 6, 8, 0)
	$SU(3)_C imes SU(3)_R imes SU(2)_L imes U(1)$	(5, 1, 5, -9, 7, 0)
	$SU(3)_C imes SU(2)_L imes SU(2)_R imes U(1)_{B-L} imes U(1)_\chi$	(-9, -3, -4, 7, 9, 0)

H Parity, DQ, H+LQ/DQ, H+DQ

A. Knochel (Uni Freiburg)

Orbifold breaking of E_6 to LR Symmetric Model

Example: $V = (-\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}, \frac{1}{2}, 0)$

Surviving chiral modes on fixed points (not in light spectrum)?

- \mathbb{Z}_6 : $(3, 2, 1)_{-3/2} + (3, 1, 2)_{3/2}$
- \mathbb{Z}_2 : $\mathbf{16}_{-3/2} + \overline{\mathbf{16}}_{3/2}$
- Z₃: (3, 3, 3)

Massless chiral mode: $(3, 2, 1)_{-3/2} + (3, 1, 2)_{3/2}$

Solutions

- $\bullet~\mathsf{Put}~(\overline{\mathbf{3}},\mathbf{2},\mathbf{1})+(\overline{\mathbf{3}},\mathbf{1},\mathbf{2})$ on \mathbb{Z}_6 FP cancels 4D anomaly
- Partial doubling of bulk matter: **78** Hypermultiplet
 → cancel massless modes and brane anomalies

Unification scheme (no intermediate Higgs in RGE)

Unification scheme (intermediate Higgs in RGE)

$$H_{int} \sim (\mathbf{1}, \overline{\mathbf{3}}, \overline{\mathbf{3}}) \cap \mathbf{16} + h.c.$$

A. Knochel (Uni Freiburg)

Unification scheme (intermediate Higgs in RGE)

 $H_{int} \sim (\mathbf{1}, \overline{\mathbf{3}}, \overline{\mathbf{3}}) + h.c.$

A. Knochel (Uni Freiburg)

29.03.2010 21 / 24

Unification scheme (intermediate Higgs in RGE)

 $H_{int} \sim 3 \times (\mathbf{1}, \overline{\mathbf{3}}, \overline{\mathbf{3}}) + h.c.$

A. Knochel (Uni Freiburg)

29.03.2010 22 / 24

Extra U(1) at low energies

$H_{\rm int}, \bar{H}_{\rm int}$	i)	ii)	3 <i>ii</i>)	i) + 2ii)
Λ_{int}/GeV	$1.6 imes10^{10}$	$3.0 imes10^{13}$	$1.3 imes10^{14}$	$4.9 imes10^{13}$
Λ_{GUT}/GeV	$1.3 imes10^{18}$	$1.5 imes10^{17}$	$7.2 imes10^{15}$	$7.2 imes10^{15}$
g' м _{z'}	0.471	0.467	0.476	0.482
Q'_X				
Q	0.224	0.231	0.234	0.232
и ^с	0.283	0.261	0.250	0.257
d ^c	0.055	0.067	0.073	0.069
D	-0.449	-0.462	-0.468	-0.464
D ^c	-0.339	-0.328	-0.322	-0.326
L	0.114	0.097	0.089	0.094
e ^c	0.165	0.201	0.218	0.208
H ^u	-0.508	-0.492	-0.484	-0.489
H ^d	-0.279	-0.298	-0.307	-0.301
S	0.787	0.790	0.790	0.790

・ロト ・ 日 ト ・ 田 ト ・

Summary & Outlook

- Exceptional unification: exciting prospect for LHC and DM searches
- 6D Orbifold breaking allows light exotics and two step unification
- Parameter scans + Monte Carlo studies for LHC
- Unhiggs/Singino/Neutralino Multicomponent Dark Matter?
- Embedding in $E_8 \times E_8$ heterotic constructions

Thank you for your Attention