

2009 electrons at CMS: a first step in the Higgs adventure

Clémentine Broutin

LLR – Ecole Polytechnique

Overview

- The search for the Higgs boson is a main goal of LHC
 - The only missing stone of the Standard Model
 - Or the first confirmation of a more complicated world
- A presentation of its search strategy at the time of LHC restart (emphasis on H → ZZ^(*) → 41 analysis)
 - First electrons from 2009 data in CMS
 - Related analyses and preparation for the Higgs
 - The Higgs boson at LHC in the next years

- Experimental bounds
 - M_H > 114.4 GeV (LEP)
 - Excl. region 162-166 GeV (TeVatron)
- Theoretical bounds
 - SM unitarity bound
 M_H < 780 GeV
 - Consistency fit (95% CL) (knowing that M_H > 115 GeV) M_H < 182 GeV

m_H(GeV)

SM search mainly in the range: 115-200 GeV

 $\sigma_{\text{LHC, 7TeV}}$ ~ (20 to 30) * σ_{TeVatron}

Other models suggest $M_H > 200 \text{ GeV}$

31/03/2009

Clémentine Broutin LLR -- Ecole Polytechnique

Higgs boson production LLR École polytechnique F - 91128 PALAISEAU cedex

Inclusive production

31/03/2009

Clémentine Broutin LLR -- Ecole Polytechnique

Higgs boson decays

A. Djouadi

- Lower masses (M_H ≤ 150 GeV)
 H → γγ
 H → ττ
- Higher masses (M_H ≥ 150 GeV) Diboson decays
 - $\bullet \ H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$
 - $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$

 ℓ = e or μ

=> Detection of isolated electrons and muons

 $H \rightarrow ZZ(*) \rightarrow 4\ell$

- A clean observation (resonance) in principle
- But a small cross section x branching ratio And huge QCD-driven backgrounds
 - Need very good efficiency on leptons, down to very low p_T^e Inefficiency will count at power 4 (e.g. cannot afford fiducial cuts)
 - Need to predict the ZZ(*) background from parton luminosities Not enough side-bands at discovery time
 - Need very accurate selection parameters

 Iepton isolation and ID, charge, vertex ...
 Precision is essential in this channel which will be used to
 disentangle S_{CP}

INNER TRACKER

RETURN YOKE

CRYSTAL ECAL

HCAL

MUON CHAMBERS

SUPERCONDUCTING COIL

- Electrons
 - Track in the silicon tracker curved by B = 3.8 T

Precision in p_{τ} : ~ 1%

Energy clusters in the ECAL
 (Si tracker: |η| < 2.5, ECAL: |η| < 3)

Precision in E: $\leq 1\%$

Stochastic term: 2.8%/VE Noise term: 41.5 MeV / E per crystal Constant term: 0.5% (incl. local containment corrections)

Efficiency control via Z \rightarrow e⁺e⁻ measurements

29/03/2010

Clémentine Broutin LLR -- Ecole Polytechnique

VERY FORWARD

- ECAL-driven reconstruction
 Si tracker: a lot of material budget
 => complicated tracks
 - energy deposit in the ECAL crystals
 - supercluster

(whole energy of the initial e in ECAL)

- Track seed (innermost layers of Si tracker) vertex
- Track (Si tracker)

Efficiency (MC): 90% at p_T =10 GeV 95% at p_T =35 GeV

- Tracker-driven reconstruction
 - Build a track allowing energy loss (Bremm. γ)
 - Supercluster built step by step (energy deposits in tangent direction)

Merging of both collections \Rightarrow no double-counting Preselection (track-SC concordance) \Rightarrow electron candidate e^+ $e^$ final γ $e^$ inital

ECAL

vertex

Gain in efficiency: esp. at $p_T < 10$ GeV and in ECAL crack regions New efficiency: > 95% for $p_T \gtrsim 10$ GeV

29/03/2010

Clémentine Broutin LLR -- Ecole Polytechnique

2009 collisions at 900 GeV

- 351 electron candidates reconstructed on minimum bias events
 - very low p_T
 - mostly fake from charged hadrons
 - real $e^{+/-}$ come mainly from γ conversions

MC: 4.6% of real, prompt electrons

- ⇒ Not the signal for which electron reconstruction has been optimized
- ⇒ But very nice results are obtained

2009 collisions at 900 GeV

 351 electron candidates reconstructed on minimum bias events

2009 collisions at 900 GeV

 351 electron candidates reconstructed on minimum bias events

2009 collisions at 900 GeV

- 351 electron candidates reconstructed on minimum bias events
 - Very good data-MC agreement
 - No tuning done on the MC
 - \Rightarrow Very good modeling of the detector
 - Also a very good
 ECAL-tracker agreement

First dielectrons in CMS: conversions

29/03/2010

LLR -- Ecole Polytechnique

What comes next...

Lepton and dilepton studies

• Electron studies (next months)

Using $Z \rightarrow e^+e^-$ events

- Reconstruction efficiency (esp. at low p_T)
- ID and isolation parameters, charge mis-ID, ...
- Z boson analysis (~2010)
 - Very clean channel
 - Normalization of ZZ continuum
 Irreducible background

for $H \rightarrow ZZ \rightarrow 4\ell$ analysis

Low p_T^e and efficiency are not key aspects crucial for Higgs analysis Clémentine Brouting

LLR -- Ecole Polytechnique

3 to 4 leptons

Study of the main Higgs backgrounds (~2011)

- W+jets, Z+jets, ...
- WZ

... and finally the Higgs

$H \rightarrow ZZ \rightarrow 4\ell$ analysis

Counting experiment in a sliding 4*l*-mass window

- Preselection (QCD, Z/W+jets)
 - at least 2 pairs of opposite charge, matching flavour leptons
 - Lower cuts on $p_{T_{\ell}}^{\ell} m_{\ell+\ell}^{\ell}$, $m_{4\ell}^{\ell}$; loose isolation
 - Identification of the « Z pair » and the « Z* pair » [exactly 4*l*]
- Further selection (Z+jets, tt, Zbb)
 - isolation, $p_T^{\ell \text{ lowest}}$, impact parameter
 - Restrictions on the reconstructed «m_z», «m_{z*}», ³
- Systematics and control from data (ZZ)
 - Efficiency measurement with Z production
 - Normalization ZZ/Z
 - Control of isolation using random cones

H → ZZ → 4 ℓ (ℓ =e or μ) 14 TeV, 1 fb⁻¹ Higgs mass (M_{4 ℓ})

Possible expectations for end 2011

7 TeV, ~ 1 fb⁻¹ estimate

- Need a combination of $H \rightarrow WW$ and $H \rightarrow ZZ$ analyses
 - SM expected exclusion range: ~ 155-180 GeV
 - In case of a 4th fermion generation: up to ~ 500 GeV

At higher energy or luminosity H \rightarrow ZZ analysis will be our guide to M_H > 180 GeV => Region not to be explored by TeVatron

Conclusion

Conclusion

- A good understanding of the detector and reconstruction from the Minimum Bias data
- A long way to go through before Higgs itself
- Main steps identified and expected
- LHC restart tomorrow, 7 TeV: good perspectives

Back-up Slides

2009 collisions at 900 GeV

CMS: 351 electron candidates reconstructed after preselection 185 330 events after run selection (BX, BSC, vertex, HF, track purity)

MC composition:

- 66.1 %: fakes from hadrons
- 29.3 %: real electrons from conversions
- 4.6 %: real, prompt electrons

 \Rightarrow ~ 16 real prompt electrons

Atlas: 879 electron candidates reconstructed before ID cuts 384 186 events after run selection (BX/BPTX-like/good quality)

MC composition:

- ~ 66 %: background fakes
- ~ 33 %: real electrons from conversions
- < 1%: prompt electrons</p>

 $\Rightarrow \leq 9$ real prompt electrons

2009 collisions at 900 GeV

CMS: 351 electron candidates reconstructed on minimum bias events

MC composition:

- 66.1 %: fakes from hadrons
- 29.3 %: real electrons from conversions
- 4.6 %: real, prompt electrons

 \Rightarrow ~ 16 real prompt electrons

Atlas: 879 electron candidates reconstructed before ID cuts

MC composition:

- ~ 66 %: background fakes
- ~ 33 %: real electrons from conversions
- < 1%: prompt electrons</p>

 $\Rightarrow \leq 9$ real prompt electrons

Comparison of 2 analyses LLR École polytechnique F - 91128 PALAISEAU cedex

$Z \rightarrow e^+e^-$

- 2e, p_T^e > 20 GeV
- Simple iso, ID cuts
- Invariant mass constraint

$WZ \rightarrow \ell \nu \ell \ell \quad (Z+jets, ZZ, Z\gamma)$

- 3*ℓ*, p_T^ℓ > 15 GeV
- Z candidate:
 2*l* same flavour, opp. charge
 - Ioose (normalized) iso, ID cuts
 - Invariant mass constraint
 - Remove events with 2 Z candidates
 - W candidate: $3^{rd} \ell$, missing E_T
 - $p_T^{\ell} > 20$ GeV, tight ID, iso
 - M_T(W) > 50 GeV
 - Background estimate

$H \rightarrow ZZ \rightarrow 4\ell$ analysis

Counting experiment in a sliding 4*l*-mass window

14 TeV

1 fb⁻¹

look-elsewhere effects

$H \rightarrow ZZ \rightarrow 4\ell$ analysis

Counting experiment in a sliding 4*l*-mass window

Spring-summer 2010

2011

On the road to $H \rightarrow ZZ \rightarrow 4\ell$

- Leptons & Dileptons
 - electrons, muons
 - $Z \rightarrow e^+e^$ $p_T^e > 20 \text{ GeV}$
- 3 and more leptons
 - W/Z + Jets, Zb
 - WW, WZ
 - Zbb
 - ZZ
 - Higgs!

- Commissioning, efficiency up to low p_T
- Extrapolation of ZZ continuum (irreducible Higgs background)
- First trilepton events
- Background removal
- First quadrilepton events
 Higgs main backgrounds
- Very interesting time!

Clémentine Broutin LLR -- Ecole Polytechnique

29/03/2010

Clémentine Broutin LLR -- Ecole Polytechnique

Possible expectations for end 2011

7 TeV, ~ 1 fb⁻¹ estimate

