Beautiful early SUSY searches

Sabine Kraml LPSC Grenoble

GDR Terascale Saclay, 29-31 March 2010

SUSY at LHC

- General expectation at LHC: large Xsections for squarks and/or gluinos.
 Strong interaction + the power of phase-space.
- Once produced, squarks/gluinos will decay into lighter sparticles until the LSP* is reached

*) LSP = lightest SUSY particle, stable if R-parity is conserved

Limits and constraints

So far only lower mass limits and indirect constraints, e.g.,

${ m BR}^{ m exp}_{ m b ightarrow s\gamma}/{ m BR}^{ m SM}_{ m b ightarrow s\gamma}$	$1.117 \pm 0.076_{\rm exp} \pm 0.082_{\rm th(SM)}$
$BR(B_s \to \mu^+ \mu^-)$	$<4.7\times10^{-8}$
${\rm BR}^{\rm exp}_{{\rm B}\to\tau\nu}/{\rm BR}^{\rm SM}_{{\rm B}\to\tau\nu}$	$1.25 \pm 0.40_{\rm [exp+th]}$
$BR(B_d \to \mu^+ \mu^-)$	$<2.3\times10^{-8}$
$\mathrm{BR}^{\mathrm{exp}}_{B\to X_s\ell\ell}/\mathrm{BR}^{\mathrm{SM}}_{B\to X_s\ell\ell}$	0.99 ± 0.32
$\mathrm{BR}^{\mathrm{exp}}_{K \to \mu \nu} / \mathrm{BR}^{\mathrm{SM}}_{K \to \mu \nu}$	$1.008 \pm 0.014_{\text{[exp+th]}}$
$\mathrm{BR}_{K\to\pi\nu\bar{\nu}}^{\mathrm{exp}}/\mathrm{BR}_{K\to\pi\nu\bar{\nu}}^{\mathrm{SM}}$	< 4.5
$\Delta M_{B_s}^{\rm exp}/\Delta M_{B_s}^{\rm SM}$	$0.97 \pm 0.01_{\rm exp} \pm 0.27_{\rm th(SM)}$
$\frac{(\Delta M_{B_s}^{\rm exp}/\Delta M_{B_s}^{\rm SM})}{(\Delta M_{B_d}^{\rm exp}/\Delta M_{B_d}^{\rm SM})}$	$1.00\pm 0.01_{\rm exp}\pm 0.13_{\rm th(SM)}$
$\Delta \epsilon_K^{\mathrm{exp}}/\Delta \epsilon_K^{\mathrm{SM}}$	$1.08 \pm 0.14_{\rm [exp+th]}$
$a_{\mu}^{\exp} - a_{\mu}^{\mathrm{SM}}$	$(30.2 \pm 8.8) \times 10^{-10}$
$M_h \; [{\rm GeV}]$	> 114.4 (see text)
$\Omega_{\rm CDM} h^2$	0.1099 ± 0.0062

DØ

0.96-2.1 fb⁻¹

Tau combin.

LEP2 chargino prel. limit

120

100

tau corridor

Observed limit and error band

Expected limit

140

m_o (GeV)

160

B-physics!

severe constraints on parameter space

Fits to available data (frequentist)

Best fit at $m_{ ilde{g}} pprox 750/600$ GeV, aneta pprox 11 .

O. Buchmüller et al, arXiv:0907.5568

("Mastercode")

see also Barbieri et al., Chankowski et al.,

The finetuning price

Finetuning = sensitivity of EW scale to input parameters

CMSSM low finetuning

red points: Relic density within WMAP limit (at 3σ)

Cassel, Ghilencea, Ross,

arXiv: 001.3884

NB: points with lowest finetuning lie in the focus point region

- gaugino-higgsino mixing
- light gluino
- Xsections a few pb at 7TeV LHC

 $\begin{array}{l} BR(\tilde{g} \rightarrow \tilde{\chi}_i^0 g) \sim 10 - 20\% \\ BR(\tilde{g} \rightarrow \tilde{\chi}_i^0 b \overline{b}, \tilde{\chi}_i^{\pm} t b) \sim 20\% \end{array}$

h^0	114.5	$\tilde{\chi}_1^0$	79	\tilde{b}_1	1147	\tilde{u}_L	1444
H^0	1264	$\tilde{\chi}_2^0$	142	\tilde{b}_2	1369	\tilde{u}_R	1446
H^{\pm}	1267	$ ilde{\chi}^0_3$	255	$\tilde{\tau}_1$	1328	\tilde{d}_L	1448
A^0	1264	$\tilde{\chi}_4^0$	280	$\tilde{\tau}_2$	1368	\tilde{d}_R	1446
\tilde{g}	549	$\tilde{\chi}_1^{\pm}$	142	$\tilde{\mu}_L$	1406	\tilde{s}_L	1448
$\tilde{\nu}_{\tau}$	1366	$\tilde{\chi}_2^{\pm}$	280	$\tilde{\mu}_R$	1406	\tilde{s}_R	1446
$\tilde{\nu}_{\mu}$	1404	\tilde{t}_1	873	\tilde{e}_L	1406	\tilde{c}_L	1444
$\tilde{\nu}_e$	1404	\tilde{t}_2	1158	\tilde{e}_R	1406	\tilde{c}_R	1446

upper limits	\tilde{g}	χ_1^0	χ_2^0	χ^0_3	χ_4^0	χ_1^{\pm}	χ_2^{\pm}	\tilde{t}_1	\tilde{t}_2	\tilde{b}_1	\tilde{b}_2
for ∆ <i00< th=""><th>1720</th><th>305</th><th>550</th><th>660</th><th>665</th><th>550</th><th>670</th><th>2080</th><th>2660</th><th>2660</th><th>3140</th></i00<>	1720	305	550	660	665	550	670	2080	2660	2660	3140

Light gluino: promising for LHC at 7 TeV

Kadala, Mercadante, Mizukoshi, Tata, Importance of b-tagging

Requiring 1, 2, or more b-jets can significantly enhance the signal/bg in certain scenarios, e.g., 15-20% in the CMSSM focus point region.

Typical if 3rd generation is lighter then 1st/2nd gen. and $m_{\tilde{q}} \ll m_{\tilde{q}}$; enhances gluino decays into t or b via on- or off-shell stop/sbottom

arXiv:0803.0001

Yukawa-unified SUSY

- SUSY GUTs based on SO(10) are particularly compelling
 - unify all matter of one generation in a 16-plet (incl. r.h. neutrino!)
 - automatic anomaly cancellation
- In the simplest realization the Higgs doublets reside in a IO-plet. This then requires t-b-tau Yukawa coupling unification in addition to gauge coupling unification at M_{GUT}.
- Parameter space:
 - common gaugino mass m_{1/2}
 - common sfermion mass parameter m₁₆
 - common Higgs mass parameter m10
 - common trilinear coupling A₀
 - $tan\beta$ and $sign(\mu)$
 - D-term contribution M_D^2 from SO(10) breaking

$$m_{H_{u,d}}^2 = m_{10}^2 \mp M_D^2$$

Blazek, Dermisek, Raby, hep-ph/0201081 Auto et al., hep-ph/0302155

Conditions for Yukawa unification (YU)

★ For μ >0, as preferred by b→sγ, Yukawa unification (YU) can only be realized for very particular parameter relations

0.

- $m_{16} \sim 5 15 \text{ TeV},$
- $A_0^2 \simeq 2m_{10}^2 \simeq 4m_{16}^2$, $(A_0 < 0)$
- $m_{1/2} \ll m_{16}$,
- $\tan\beta \sim 50$.

\star D-term splitting

$$\begin{split} m_Q^2 &= m_E^2 = m_U^2 &= m_{16}^2 + M_D^2 \\ m_D^2 &= m_L^2 &= m_{16}^2 - 3M_D^2 \\ m_{\tilde{\nu}_R}^2 &= m_{16}^2 + 5M_D^2 \\ m_{H_{u,d}}^2 &= m_{10}^2 \mp 2M_D^2 . \end{split}$$

"just-so" Higgs splitting (HS) case
B: we need $m_{H_u}^2 < m_{H_d}^2$ at $M_{\rm GUT}$, so $M_D^2 >$

- 10⁹ 10¹¹ 10¹³ 10¹⁵ 10¹⁷ 2 (GeV)
- D-term splitting w/o RHN gives R~1.08 (i.e. 8% unification)
- Splitting of only m_H's ("just-so HS") allows for R~1.01
- D-term splitting with RHN gives R~1.04,
- ... but if we allow in addition small non-degeneracy of 3rd vs. 1st/2nd generation, we get R~1.02

Ν

Baer et al., 0908.0134

YU: Typical mass spectra

 $R = \frac{max(f_t, f_b, f_\tau)}{min(f_t, f_b, f_\tau)}$

- Ist/2nd generation scalars in the multi-TeV range (5-15 TeV)
- 3rd gen. scalars, heavy Higgses and higgsinos in the 1-3 TeV range
- light gauginos: LSP ~ 50-80 GeV, gluino ~ 300-500 GeV
- c.f "effective SUSY" by Cohen, Kaplan, Nelson '1996

Points from a MCMC scan for small R

LHC reach at 7 TeV

 $m_{\widetilde{g}}$ (GeV)

Gluino-pair prod. dominated by gg fusion. Much less enhancement from heavy squarks. $\sigma(LO) \sim I \text{ pb at m(gluino}) \sim 525 \text{ GeV}$

We consider model lines for HS and DR3 cases as function of m(gluino) up to 700 GeV.

Gluinos decays are again dominanted by heavy flavours: $\tilde{g} \rightarrow \tilde{\chi}_{1,2}^0 b \bar{b}, \, \tilde{\chi}_1^{\pm} t b$

Baer et al, arXiv:0911.4739

LHC reach at 7 TeV

Event simulation:

- Isajet 7.79 for the signal
- QCD, 2- and 3-bdy BGs with Alpgen
- 4t, 4b, 2t2b BGs with Madgraph
- Phythia for showering and hadronization
- Generic toy detector simulation

Basic Cuts "C0":

- $n(jets) \ge 4$ with $p_T > 50 GeV$
- hardest jet pT >100 GeV
- $S_T \ge 0.2$ (transv sphericity)
- $n(b) \ge 1$ (b-eff. 60%)

Results after C1-based selection							
	$\sigma(n(b) \ge 3)$	$\sigma(n(b) \ge 4)$	$\sigma(OS)$				
HSb	364 fb	$68 \mathrm{fb}$	$81~{\rm fb}$				
DR3b	782 fb	139 fb	23 fb				
BG	16 fb	2 fb	$9~{\rm fb}$				

LHC reach at 7 TeV

Conclusions

- Many well-motivated SUSY scenarios feature light gluinos, often in combination with heavy scalars, e.g.,
 - Focus point SUSY
 - Low finetuning scenarios
 - Yukawa-unified SUSY GUTs based on SO(10)
 - Effective SUSY
- Promising potential for LHC @ 7 TeV
- Gluinos often decay into heavy flavours
 Search in multi-b channels may essential for early discovery.

There are exciting times ahead of us

