#### SOFT-WALL STABILIZATION

Gero von Gersdorff (École Polytechnique) GDR Terascale, Saclay, March 29th 2010

Collaboration with J.A.Cabrer and M.Quirós

#### OUTLINE

- Introduction
- Soft Wall models (models with I brane)
- Soft Wall stabilization and spectra
- A class of models
- Conclusions

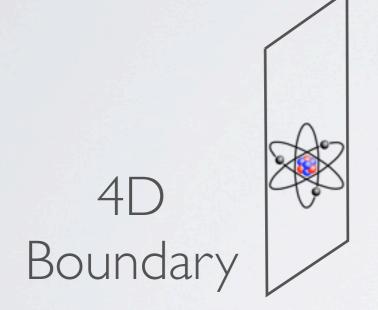
# OPEN QUESTIONS INTHE SM (AND BEYOND)

- What is the origin of Electroweak Symmetry Breaking?
- Why is the scale of the Z and W bosons  $10^{17}$  times smaller than the Planck mass? (Hierarchy Problem)
- Why is there such a huge hierarchy in the masses of the Standard Model fermions?
- What is the origin of neutrino masses?
- If there is Supersymmetry, how is it broken?
- If there is a Grand Unified Theory, how is it broken to the SM, and why are there no colored Higgses?

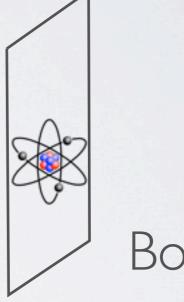
## All these issues can be addressed in models with Extra Dimensions

Randall & Sundrum '99

Randall & Sundrum '99

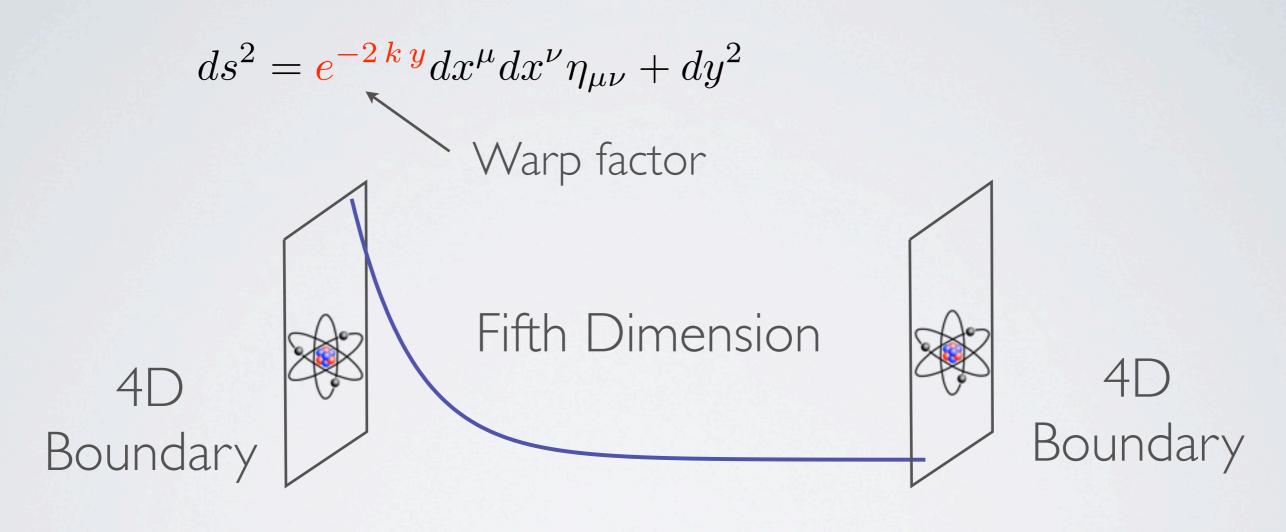


Fifth Dimension

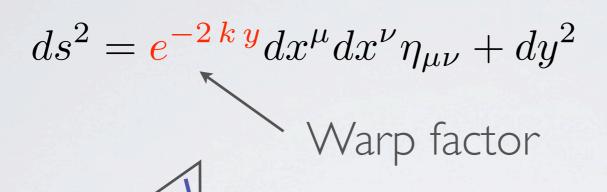


4D Boundary

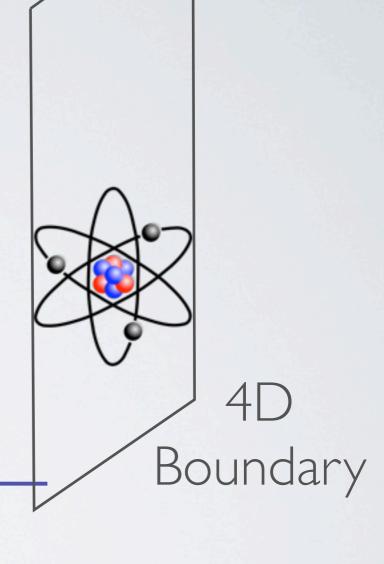
Randall & Sundrum '99

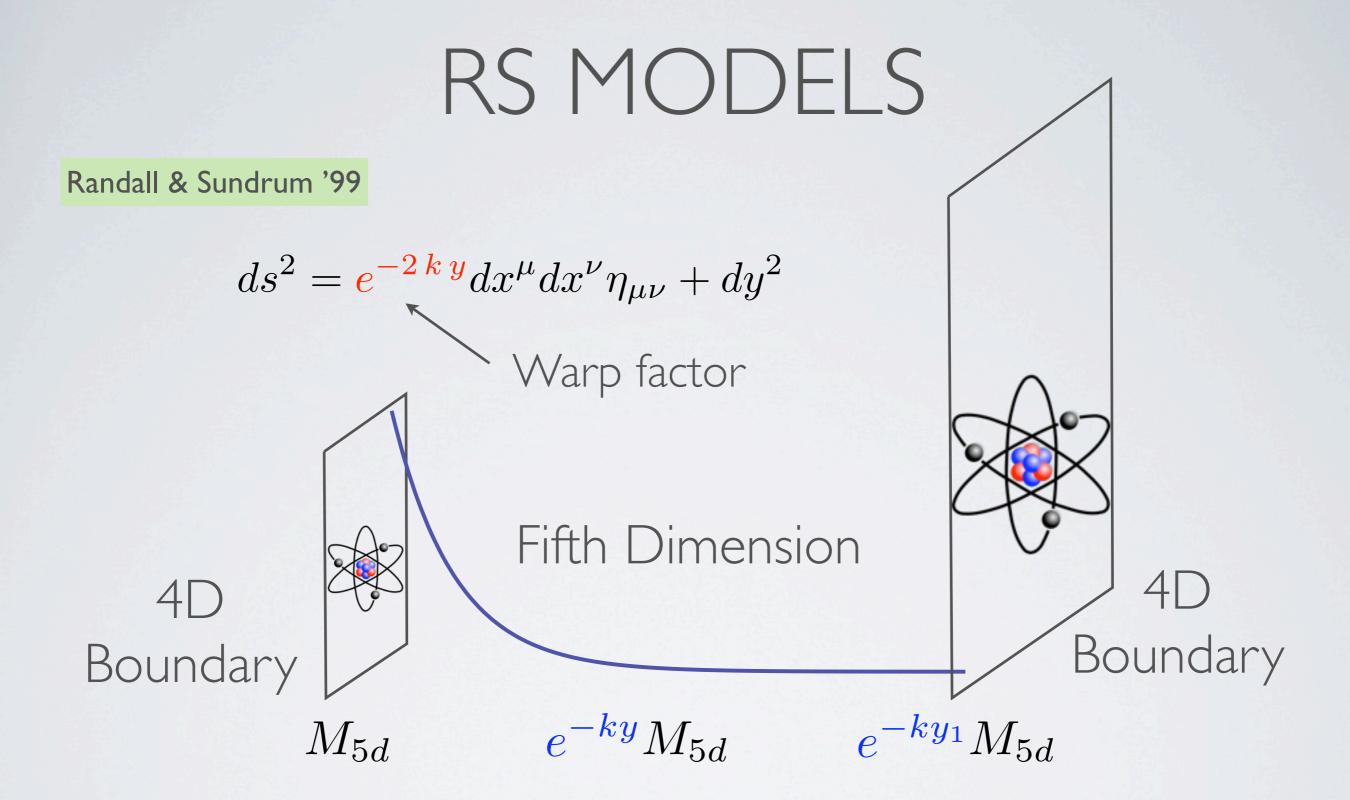


Randall & Sundrum '99

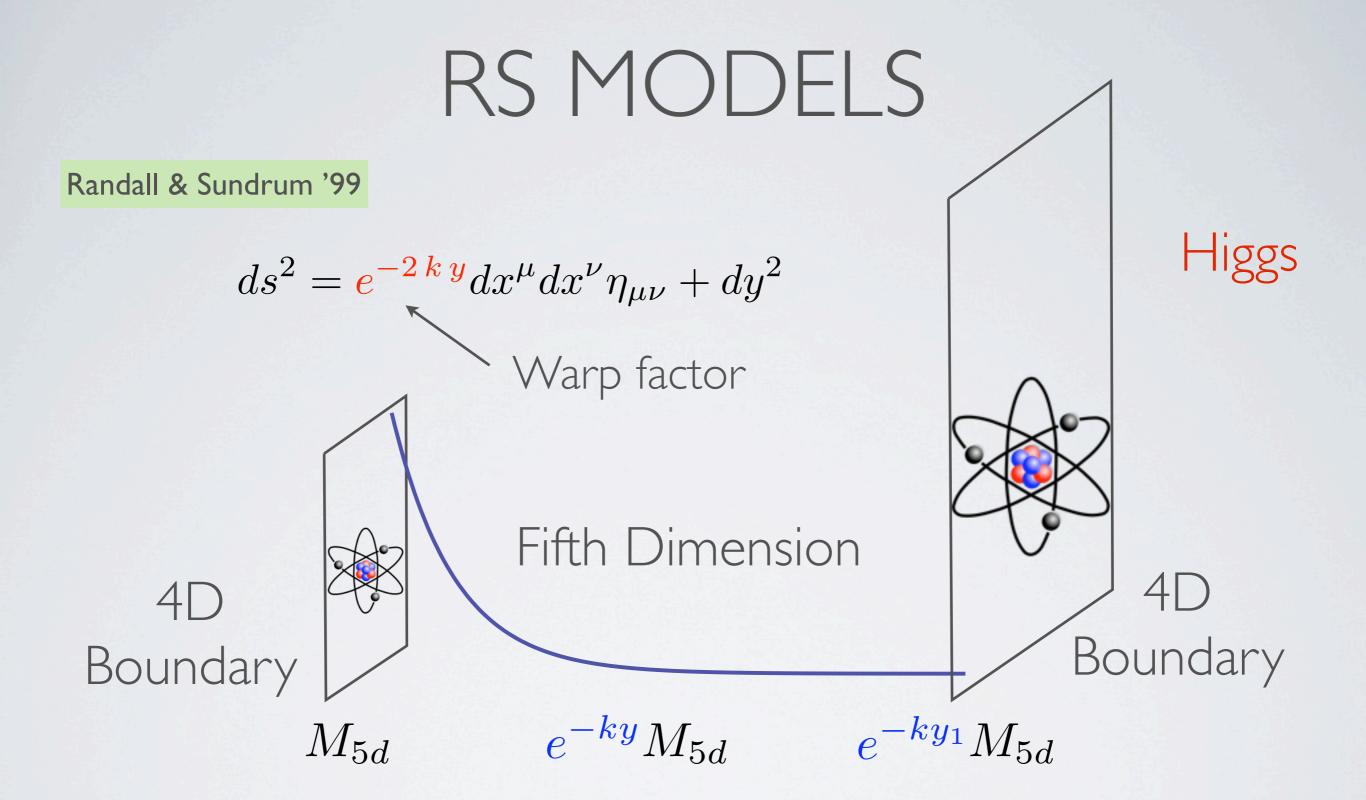


4D Boundary Fifth Dimension

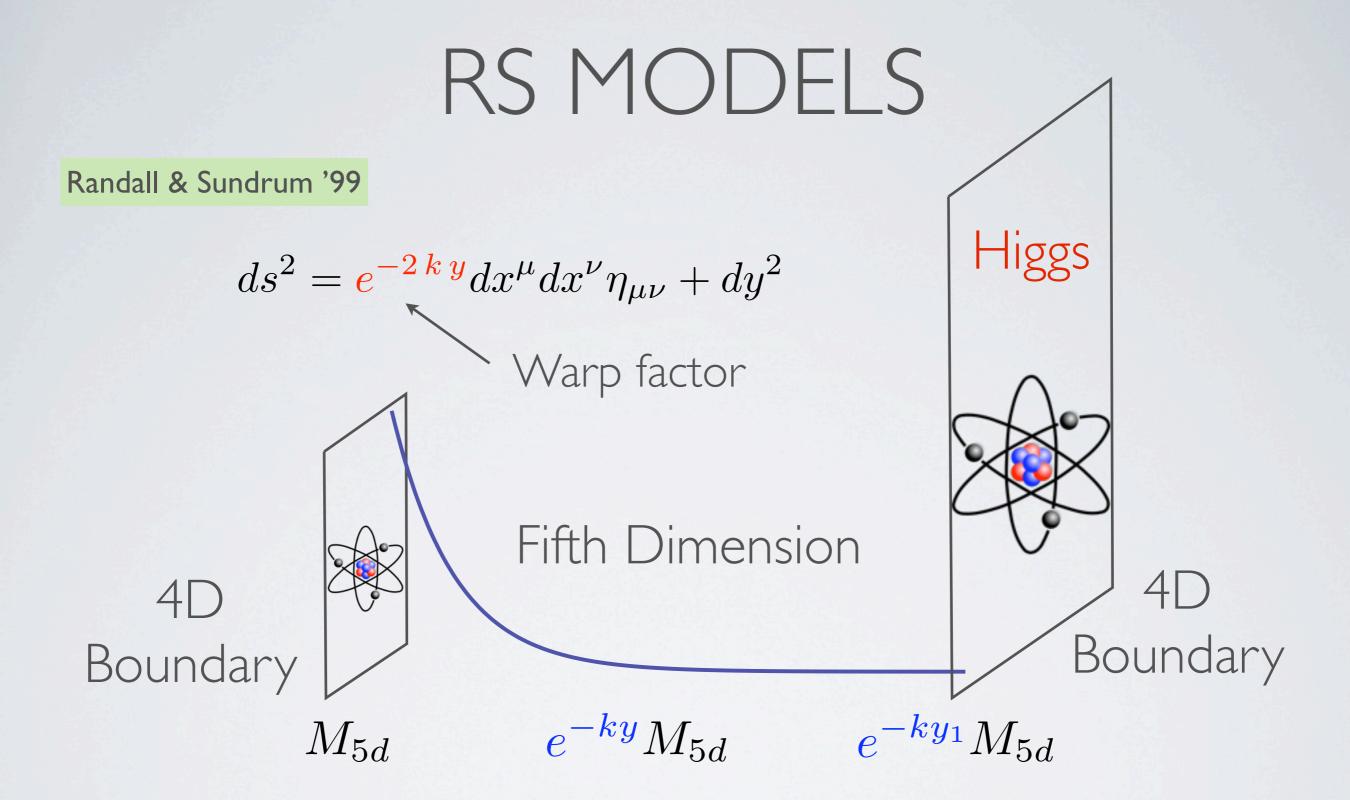




Fundamental cutoff scale is redshifted



Fundamental cutoff scale is redshifted



Fundamental cutoff scale is redshifted

#### STABILIZATION PROBLEM

- Pure 5D Gravity with negative Cosmological Constant (and appropriate brane tensions) has RS as a solution.
- BUT: Interbrane distance is UNDETERMINED
- There is an extra massless mode (RADION)

$$g_{MN} = g_{MN}^{RS} + \begin{pmatrix} h_{\mu\nu} \\ h_{55} \end{pmatrix}$$

- How to fix the length of the extra dimension?
- How to generate potential and mass for the radion
- · Can be solved by adding a scalar field

Do we need two branes?

#### GAUGE/GRAVITY DUALITY

Gravity/Gauge theory correspondence asserts that the 5D theory is dual to a strongly coupled 4D gauge theory

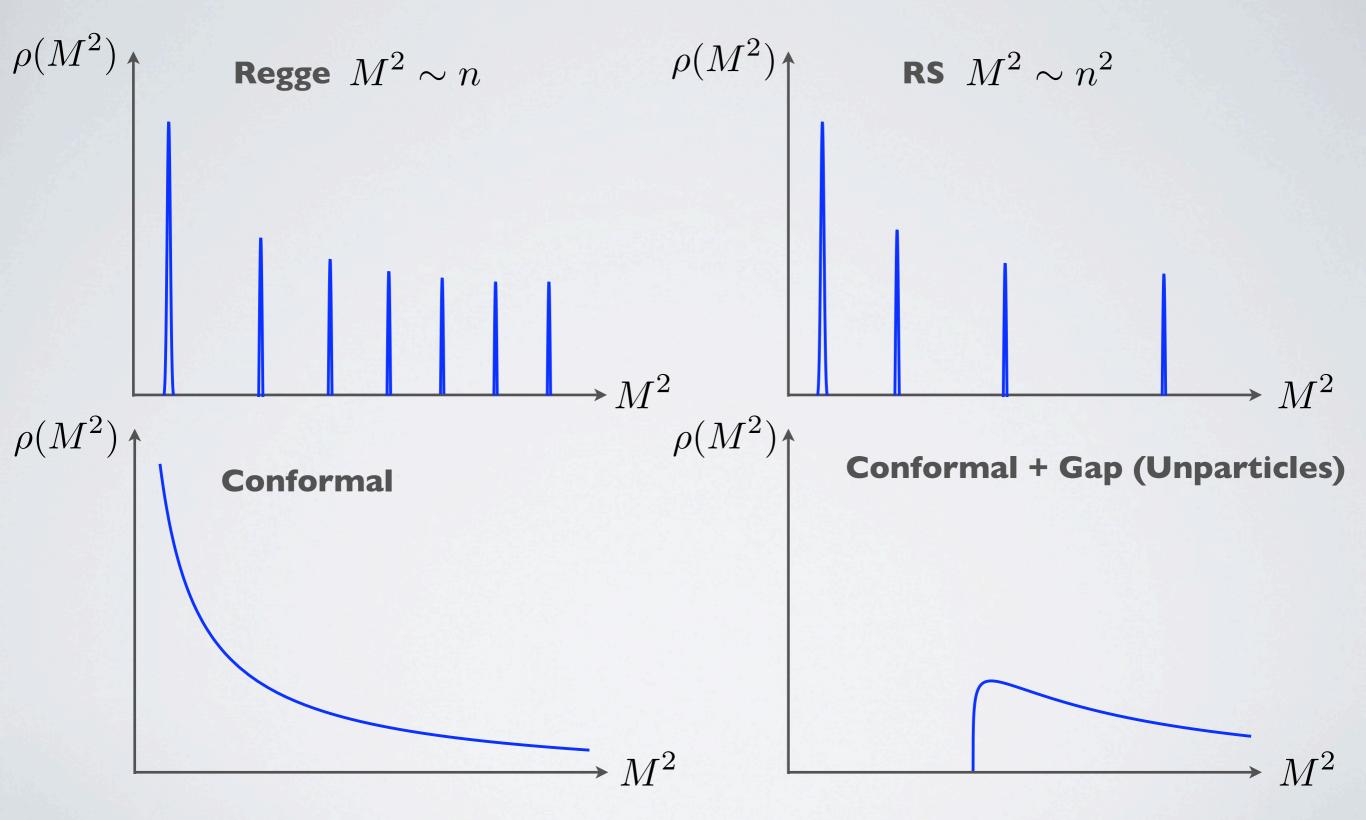
KK modes on 5d side



Resonances ("mesons") on 4d side

- RS with two branes: KK spectrum is roughly  $m_n^2 \sim n^2$
- In 4D strongly coupled gauge theories many more possibilities.

#### POSSIBLE SPECTRA

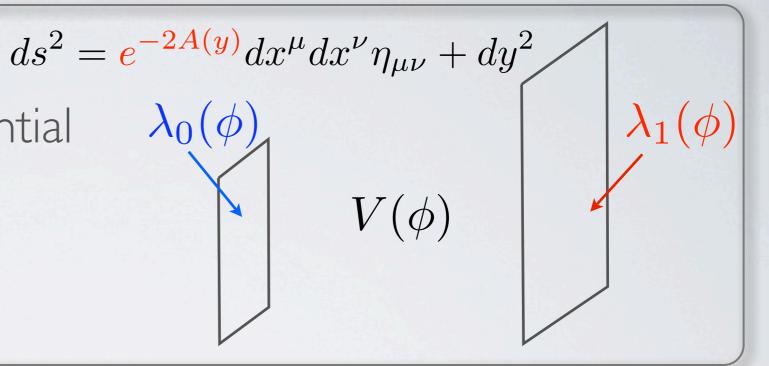




#### SUPERPOTENTIAL METHOD

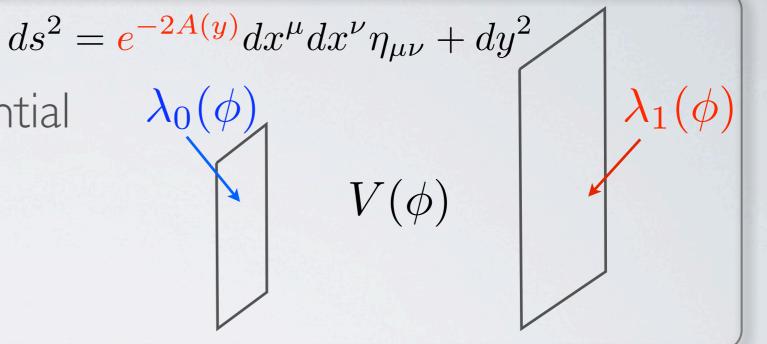
#### SUPERPOTENTIAL METHOD

- Gravity + scalar field  $ds^2$  with bulk and brane potential
- Solve Einstein equations coupled to scalar



#### SUPERPOTENTIAL METHOD

- Gravity + scalar field  $ds^2$  with bulk and brane potential
- Solve Einstein equations coupled to scalar



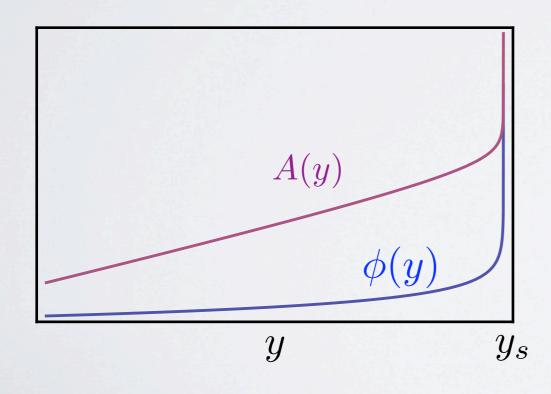
- Define a "Superpotential"  $V(\phi) = 3W'(\phi)^2 12W^2(\phi)$  NO SUSY INVOLVED
- Einstein equations become  $\phi'(y) = W'(\phi)$   $A'(y) = W(\phi)$
- Boundary values from extremizing the 4D potentials

$$V_i(\phi) = \lambda_i(\phi) - 6W(\phi)$$

DeWolfe et al '99, Brandhuber & Sfetsos '99

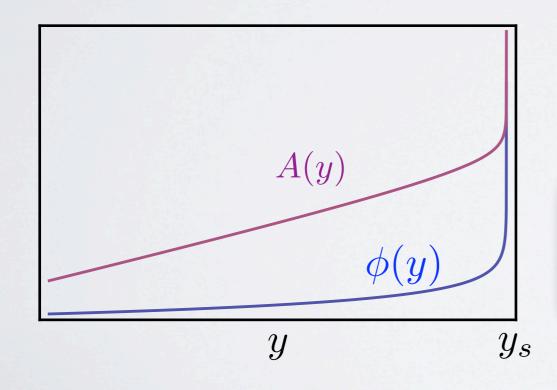
Soft Walls models only possess a single (UV) brane, but nevertheless exhibit a finite length in the 5th dimension. The IR brane is replaced by a curvature singularity at which the metric vanishes.

Soft Walls models only possess a single (UV) brane, but nevertheless exhibit a finite length in the 5th dimension. The IR brane is replaced by a curvature singularity at which the metric vanishes.



$$ds^{2} = e^{-2A(y)} dx^{\mu} dx^{\nu} \eta_{\mu\nu} + dy^{2}$$

Soft Walls models only possess a single (UV) brane, but nevertheless exhibit a finite length in the 5th dimension. The IR brane is replaced by a curvature singularity at which the metric vanishes.



$$ds^{2} = e^{-2A(y)} dx^{\mu} dx^{\nu} \eta_{\mu\nu} + dy^{2}$$

Profiles diverge at finite y if  $W(\phi) \sim \phi^2$  or faster!

#### SOFT WALL STABILIZATION

#### SOFT WALL STABILIZATION

The Warping  $exp(-k y_s)$  affects the Mass scale:

- The Unparticle mass gap
- The level spacing in the discrete case



#### SOFT WALL STABILIZATION

The Warping  $exp(-k y_s)$  affects the Mass scale:

- The Unparticle mass gap
- The level spacing in the discrete case



- Notice that  $e^{k y_1} = 10^{16} \Longrightarrow k y_1 \approx 37$
- Choose some suitable W such that

$$ky_s = \int_{\phi_0}^{\infty} \frac{1}{W'(\phi)} \approx 37$$

- Now shift superpotential  $W \to W + k$ 

$$A(y) \to A(y) + k y$$

- Shift does not change position of singularity

Remember

$$\phi'(y) = W'(\phi)$$
$$A'(y) = W(\phi)$$

$$A'(y) = W(\phi)$$

#### SPECTRA WITH SOFT WALLS

#### SPECTRA WITH SOFT WALLS

• In the conformally flat frame, the KK spectrum of any bulk field follows a Schrödinger Equation

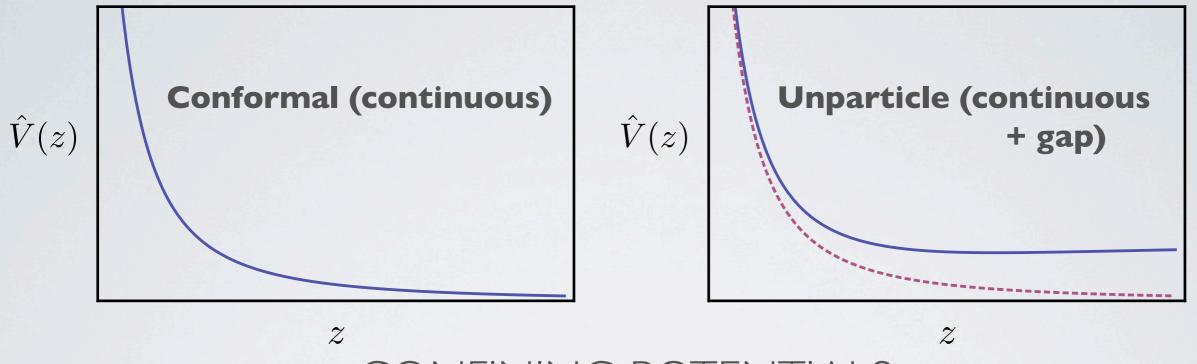
Depends on the background

Proper Length coordinates Conformally flat coordinates

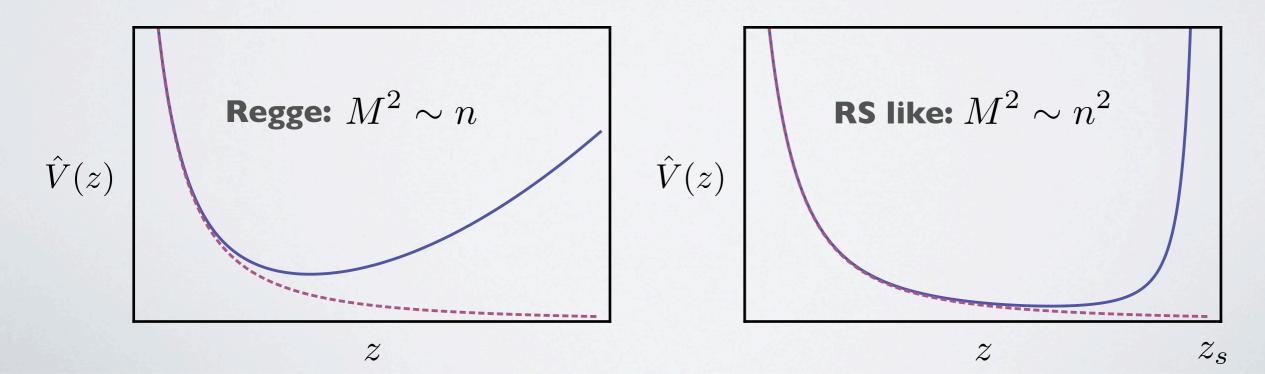
$$ds^2 = e^{-2A(y)} dx^{\mu} dx^{\nu} \eta_{\mu\nu} + dy^2 \qquad ds^2 = e^{-2A(z)} (dx^{\mu} dx^{\nu} \eta_{\mu\nu} + dz^2)$$
$$y_s < \infty , \qquad z_s = z(y_s) \quad \text{can be finite or infinite}$$

#### NON CONFINING POTENTIALS

Conformal length infinite



### CONFINING POTENTIALS Conformal length finite or infinite



| $W(\phi)$  | $\leq \phi^2$   |         | $e^{\phi}$  | $e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$ | $ > e^{\phi} \phi^{\frac{1}{2}} $ $ < e^{2\phi} $ | $\geq e^{2\phi}$ |
|------------|-----------------|---------|-------------|----------------------------------------------------|---------------------------------------------------|------------------|
| $y_s$      | $\infty$        |         |             |                                                    |                                                   |                  |
| $z_s$      | $\infty$ finite |         |             |                                                    |                                                   |                  |
| mass       | conti           | 0110110 | continuous  | discrete                                           |                                                   |                  |
| spectrum   | continuous      |         | w/ mass gap | $m_n \sim n^{2\beta}$                              | $m_n \sim$                                        | $\sim n$         |
| consistent |                 |         | MOC         |                                                    |                                                   | 10.0             |
| solution   | yes no          |         |             |                                                    |                                                   |                  |

|  | II7(4)     | $\leq \phi^2$ | $> \phi^2$<br>$< e^{\phi}$ | $e^{\phi}$  | $e^{\phi}\phi^{eta}$                               | $ > e^{\phi} \phi^{\frac{1}{2}} $ $ < e^{2\phi} $ | $\geq e^{2\phi}$ |
|--|------------|---------------|----------------------------|-------------|----------------------------------------------------|---------------------------------------------------|------------------|
|  | νν (φ)     |               | $< e^{\phi}$               |             | $e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$ | $< e^{2\phi}$                                     |                  |
|  | $y_s$      | $\infty$      |                            |             |                                                    |                                                   |                  |
|  | $z_s$      |               |                            | $\infty$    | finite                                             |                                                   |                  |
|  | mass       | continuous    |                            | continuous  | discrete                                           |                                                   |                  |
|  | spectrum   | COIIGII       | luous                      | w/ mass gap | $m_n \sim n^{2\beta}$ $m_n \sim n$                 |                                                   | $\sim n$         |
|  | consistent |               |                            | MOC         |                                                    | no                                                |                  |
|  | solution   |               |                            | yes         |                                                    | no                                                |                  |

Asymptotic behaviour of W

| T17(4)     | $\leq \phi^2$ | $> \phi^2$ $< e^{\phi}$ | $e^{\phi}$  | $e^{\phi}\phi^{eta}$                               | $ > e^{\phi} \phi^{\frac{1}{2}} $ $ < e^{2\phi} $ | $\geq e^{2\phi}$ |
|------------|---------------|-------------------------|-------------|----------------------------------------------------|---------------------------------------------------|------------------|
| $W(\phi)$  |               | $< e^{\phi}$            |             | $e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$ | $< e^{2\phi}$                                     |                  |
| $y_s$      | $\infty$      |                         |             |                                                    |                                                   |                  |
| $z_s$      |               |                         | $\infty$    | finite                                             |                                                   |                  |
| mass       | continuous    |                         | continuous  | discrete                                           |                                                   |                  |
| spectrum   | COIIGII       | luous                   | w/ mass gap | $m_n \sim n^{2\beta}$                              | $m_n \sim$                                        | $\sim n$         |
| consistent |               |                         | MOC         |                                                    | no                                                |                  |
| solution   |               |                         | yes         |                                                    | no                                                |                  |

Asymptotic behaviour of W Singularity in "proper distance"

|  | $W(\phi)$           | $\leq \phi^2$ | $> \phi^2$<br>$< e^{\phi}$ | $e^{\phi}$  | $e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$ | $ > e^{\phi} \phi^{\frac{1}{2}} $ $< e^{2\phi} $ | $\geq e^{2\phi}$ |
|--|---------------------|---------------|----------------------------|-------------|----------------------------------------------------|--------------------------------------------------|------------------|
|  |                     |               | $< e^{\phi}$               |             | $0 < \beta \le \frac{1}{2}$                        | $< e^{2\phi}$                                    |                  |
|  | $y_s$               | $\infty$      |                            |             |                                                    |                                                  |                  |
|  | $z_s$               |               |                            | $\infty$    |                                                    | finite                                           |                  |
|  | mass                | continuous    |                            | continuous  | discrete                                           |                                                  |                  |
|  | spectrum            |               |                            | w/ mass gap | $m_n \sim n^{2\beta}$                              | $m_n \sim$                                       | $\sim n$         |
|  | consistent solution |               |                            | yes         |                                                    |                                                  | no               |

Asymptotic behaviour of W

Singularity in "proper distance"

Singularity in "conformal distance"

Gursoy et al '07, Cabrer, GG & Quirós '09

|          | $W(\phi)$           | $\leq \phi^2$ |  | $e^{\phi}$  | $e^{\phi}\phi^{\beta}$ $0 < \beta \le \frac{1}{2}$ | $ > e^{\phi} \phi^{\frac{1}{2}} $ $ < e^{2\phi} $ | $\geq e^{2\phi}$ |
|----------|---------------------|---------------|--|-------------|----------------------------------------------------|---------------------------------------------------|------------------|
| $\dashv$ | $y_s$               | $\infty$      |  | finite      |                                                    |                                                   |                  |
| _[       | $z_s$               | $\infty$ fini |  |             |                                                    |                                                   | te               |
|          | mass                | continuous    |  | continuous  | discrete                                           |                                                   |                  |
|          | spectrum            |               |  | w/ mass gap | $m_n \sim n^{2\beta}$                              | $m_n \sim$                                        | $\sim n$         |
|          | consistent solution |               |  | yes         |                                                    |                                                   | no               |

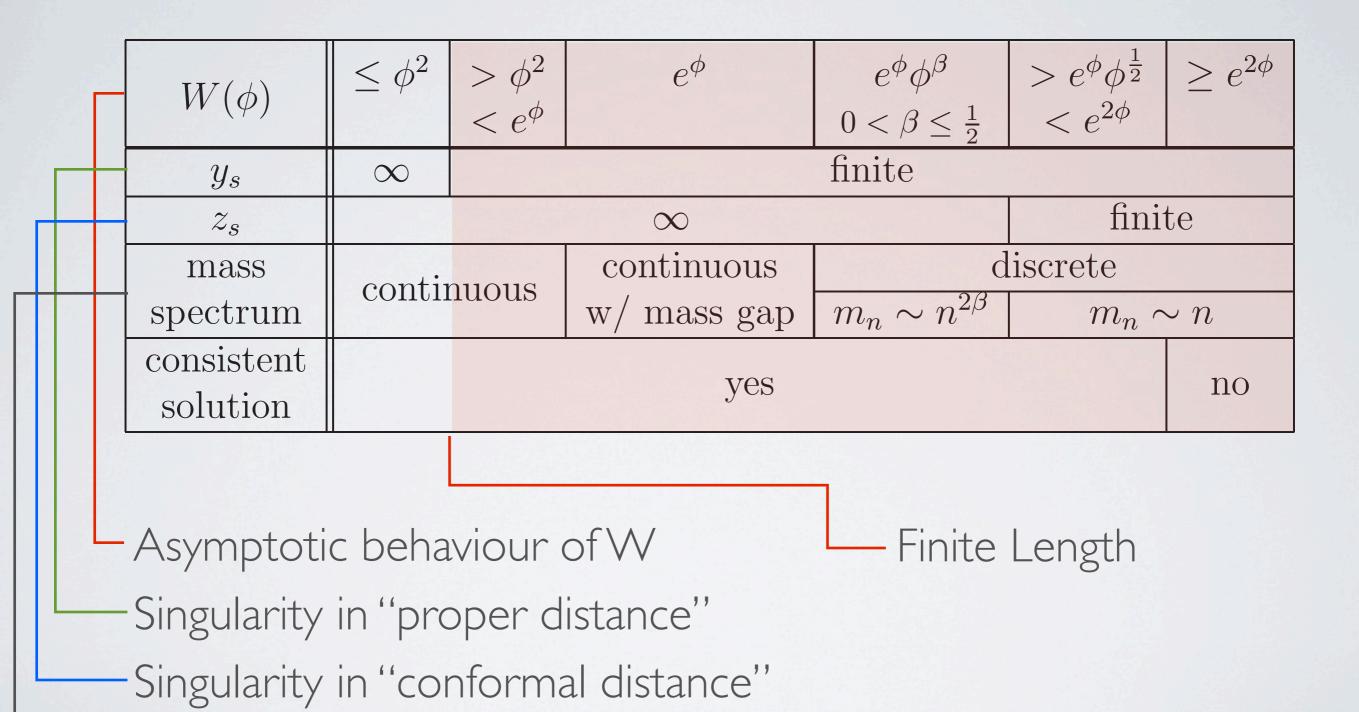
Asymptotic behaviour of W

Singularity in "proper distance"

·Singularity in "conformal distance"

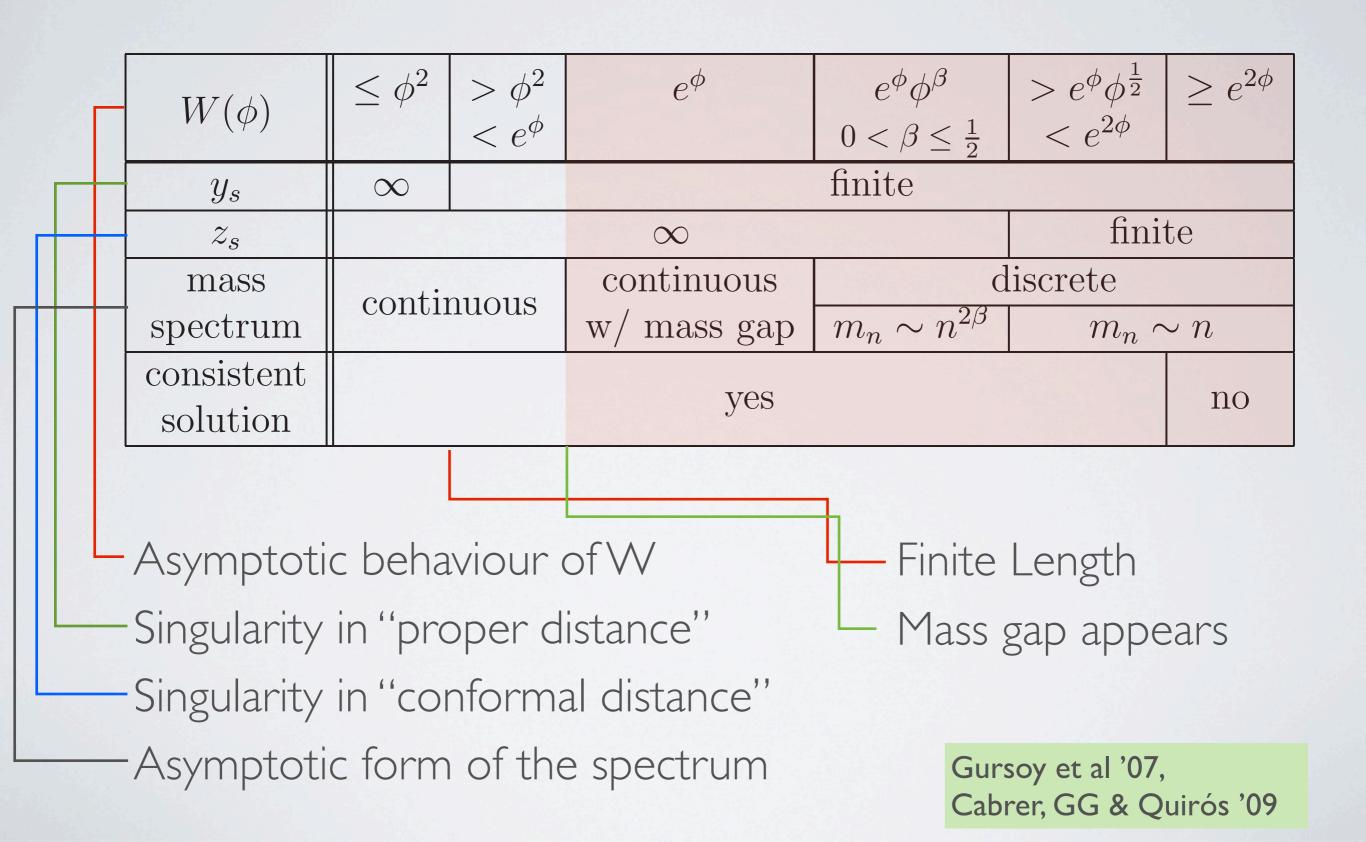
-Asymptotic form of the spectrum

Gursoy et al '07, Cabrer, GG & Quirós '09

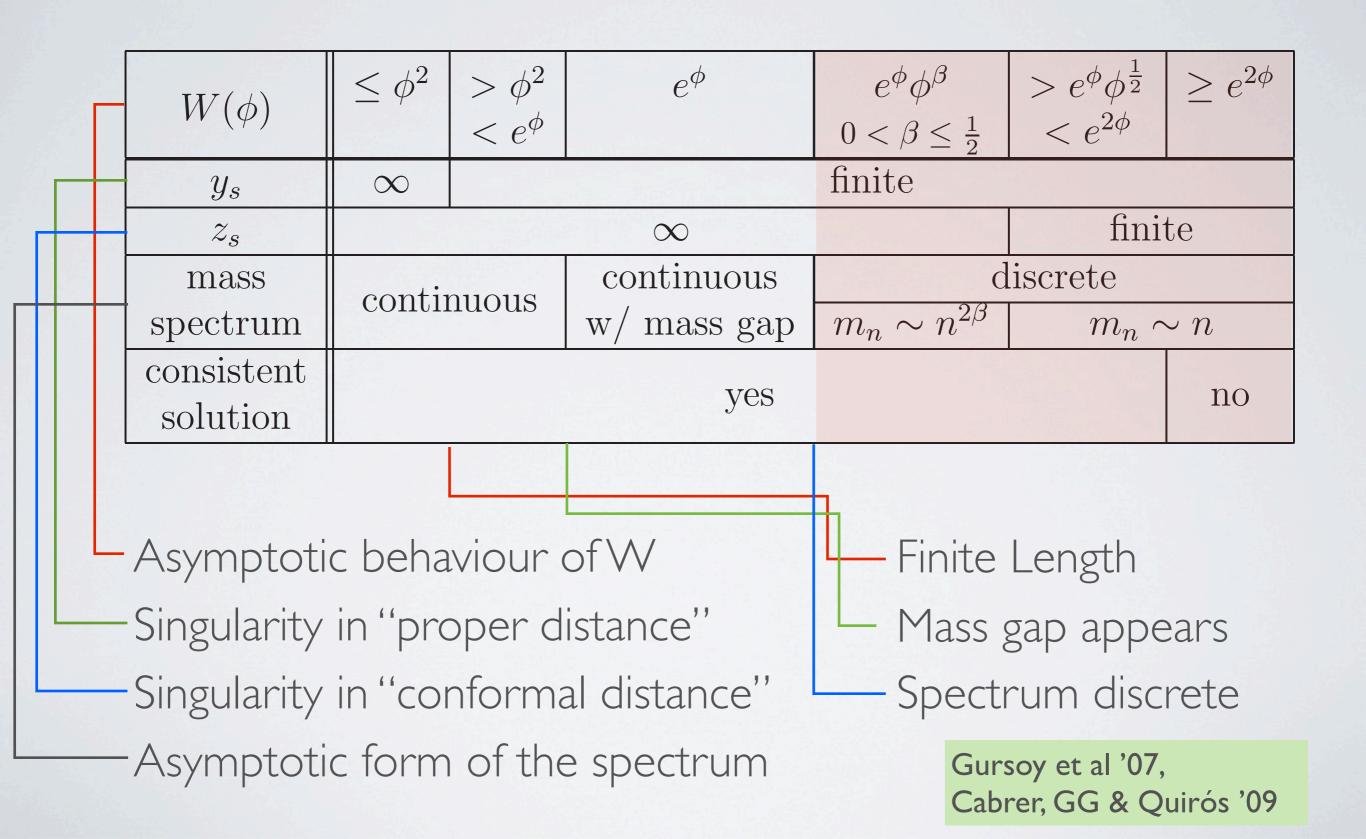


Asymptotic form of the spectrum

Gursoy et al '07, Cabrer, GG & Quirós '09



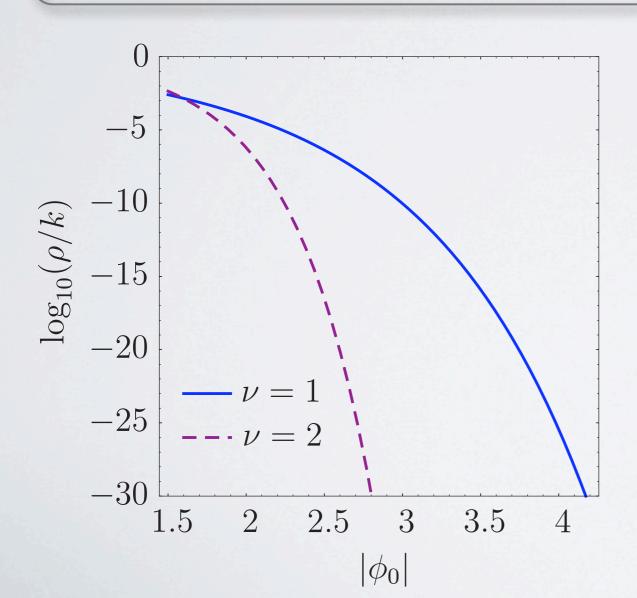
## SOFT WALL SPECTRA



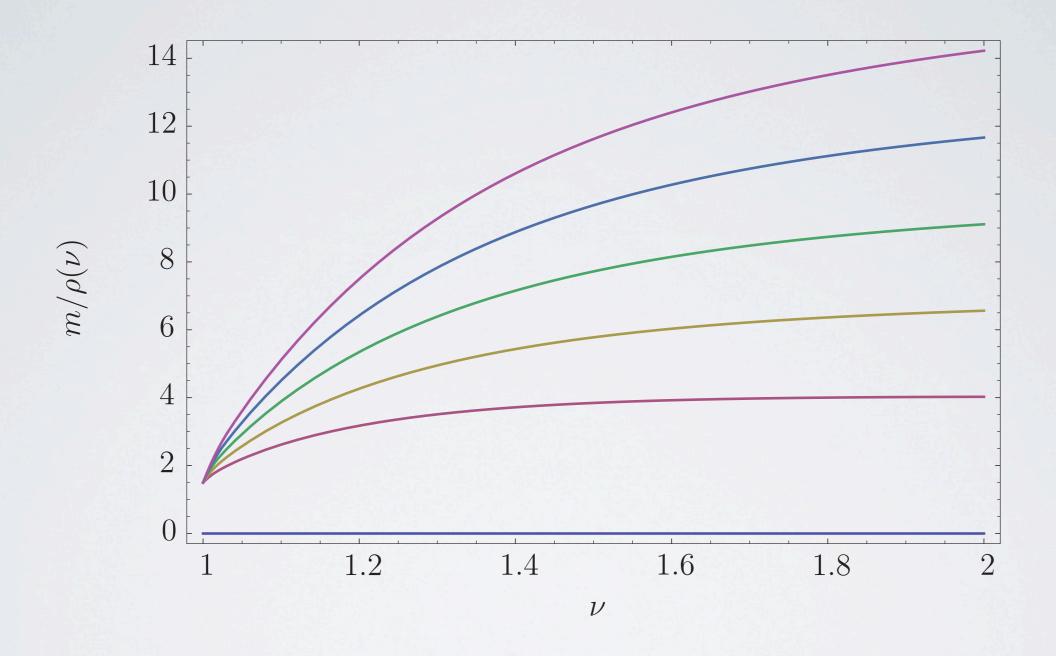
#### PARTICULAR MODELS

Consider the class of models  $W(\phi) = k(1 + e^{\nu\phi})$ 

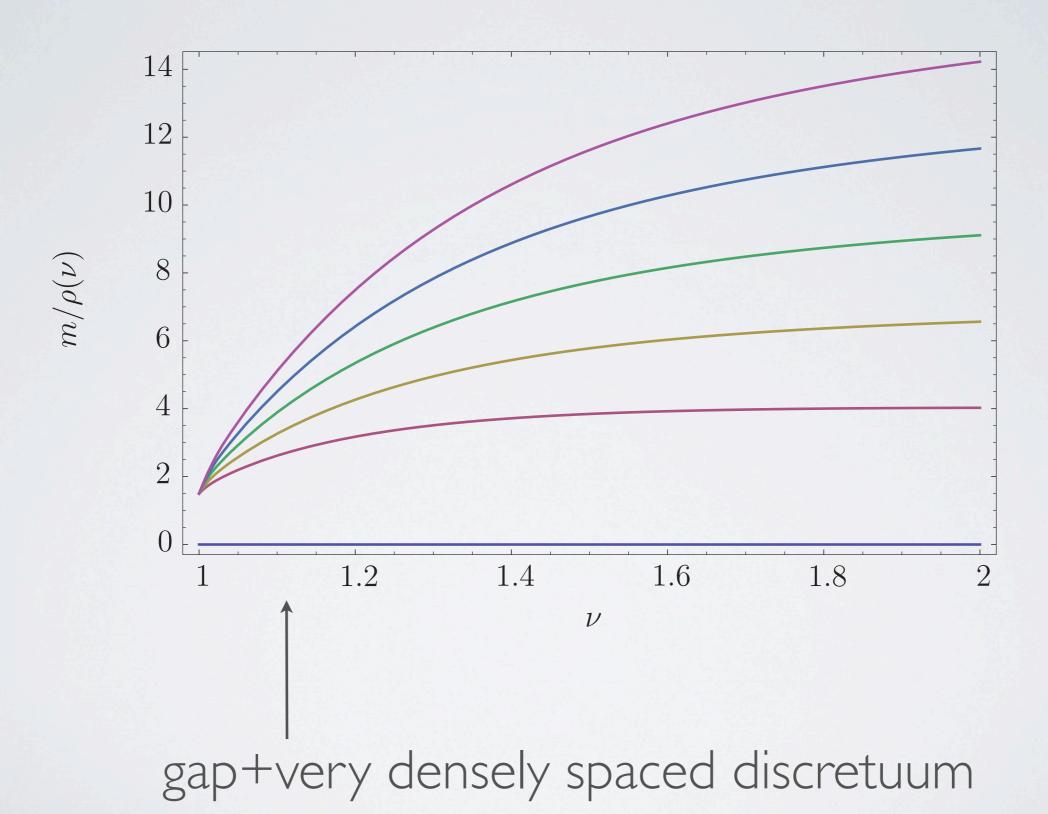
$$ky_s = \frac{1}{\nu^2} e^{-\nu\phi_0} \approx 37$$
 for O(I) negative values for  $\phi_0$ 

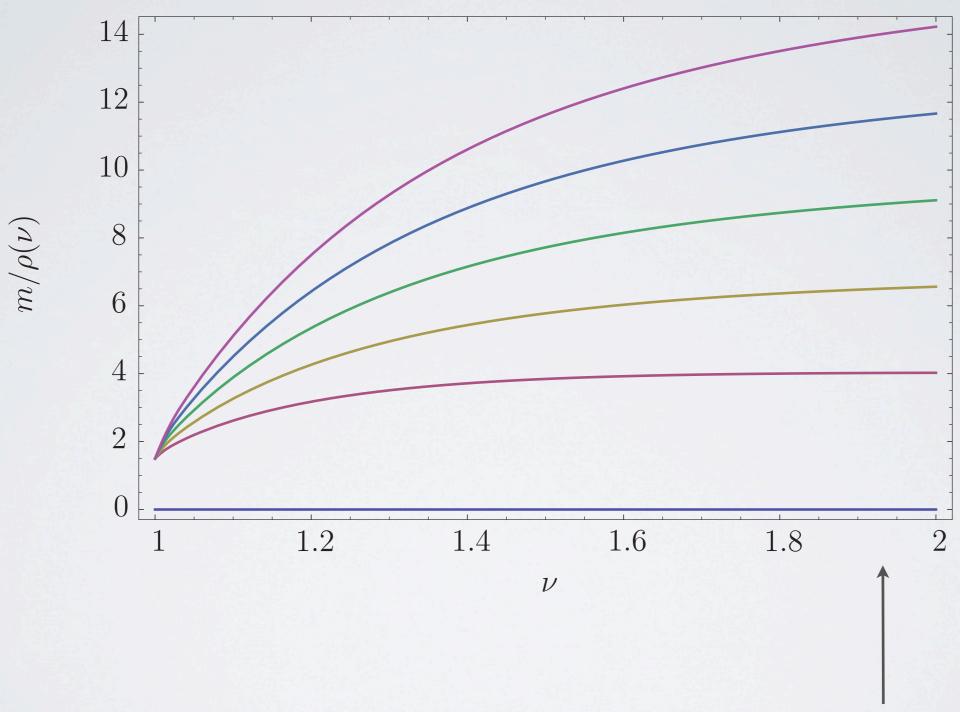


Spectrum can be
- Continuous
- Continuous+gap
- Discrete



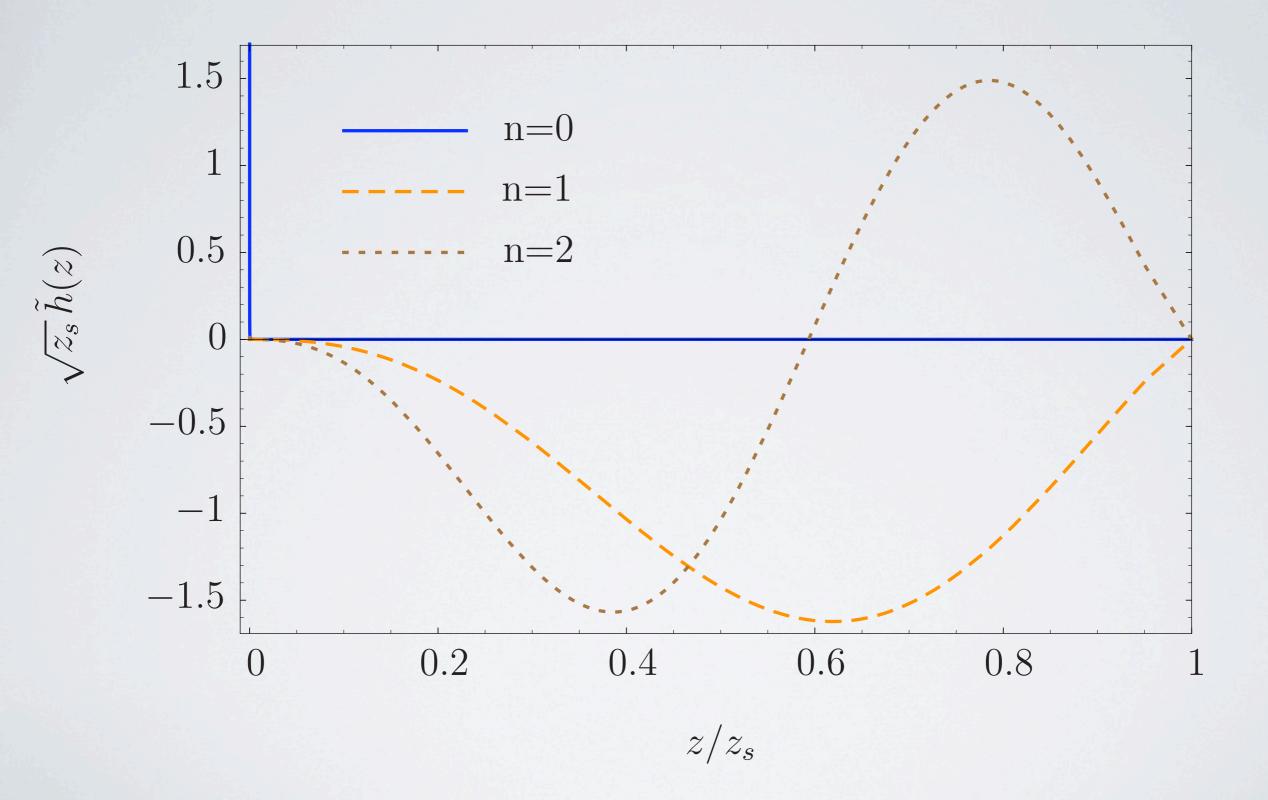






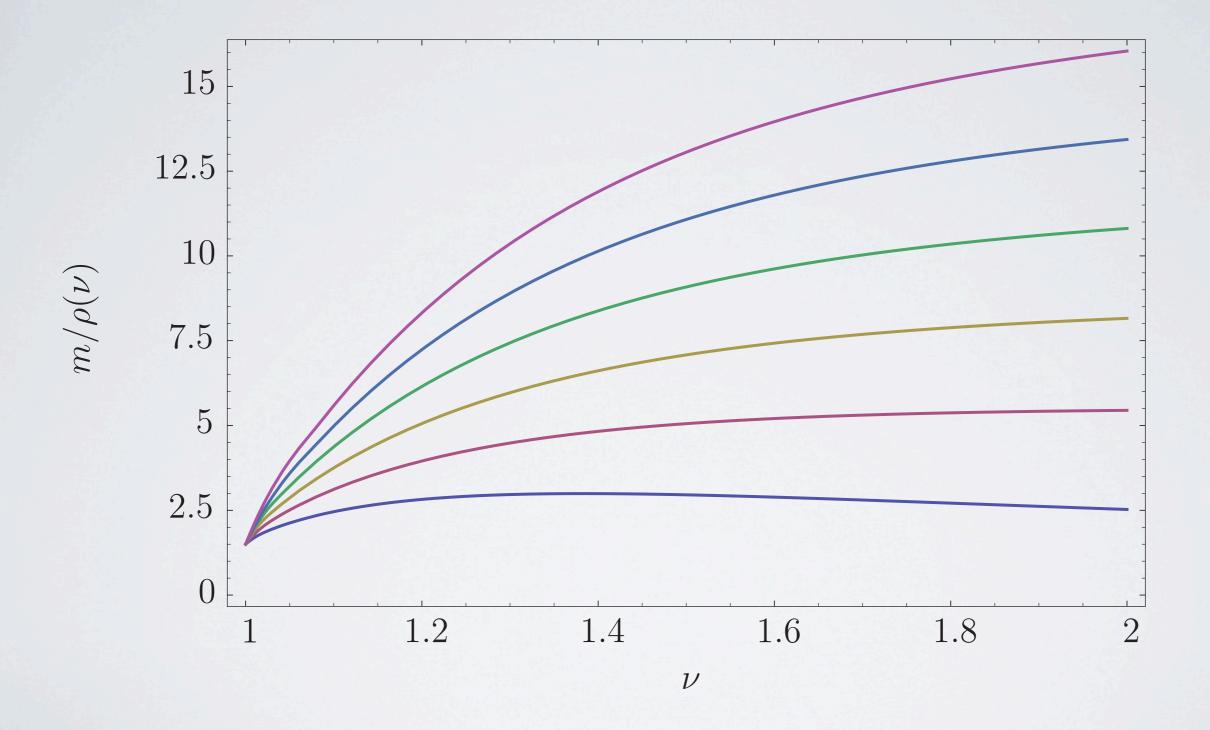
Discrete, hard-wall like

## WAVE FUNCTIONS

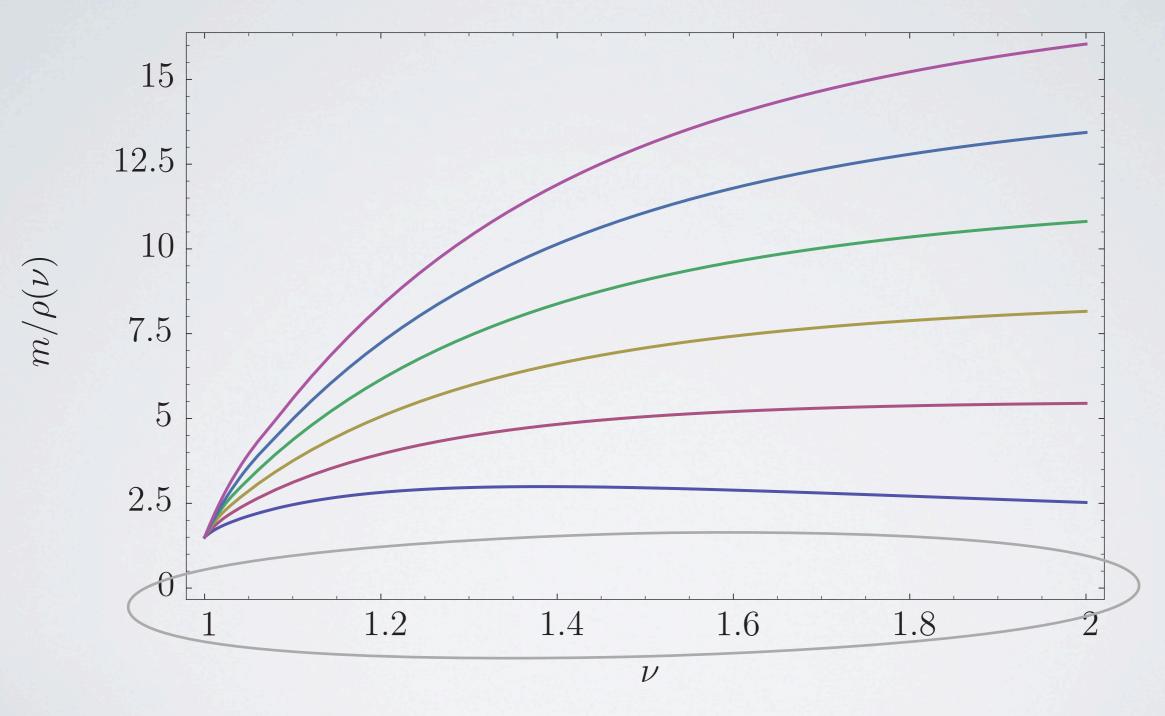


## THE RADION SPECTRUM

## THE RADION SPECTRUM



## THE RADION SPECTRUM



#### **NO ZERO MODE**

## CONCLUSIONS

- RS models provide way of obtaining electroweak and fermion mass hierarchy
- · Stabilization can be achieved by adding extra scalar field
- IR brane can be consistently replaced by Soft Walls
- Spectra of Soft Wall models richer than in usual RS (gapped continuum, gapped, discretuum, Regge-like, etc.)
- Stabilization can be achieved without ANY fine tuning