BSM searches with top quarks in ATLAS
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The mass of the top quark is an indication of its affinity to new physics.
- that's why it's a trouble maker in the SM

- that's why it's special in many BSM models (Little Higgs, ED)

The top is a multi-purpose quark (from calibration to BSM searches)
— trigger, tag, isolate, distinguish from anti-quark

Top is the new bottom (E. Laenen, CERN theory workshop 2009).
—expect a prominent role of the top quark at the LHC (and the ILC!)

This talk: evaluate the early LHC potential for BSM physics, with a strong focus on tt
resonances. A glimpse of some of the things we could do after 2011.



Tevatron has allowed a detailed study of
the top quark properties in 15 years since
its discovery

- 81b’ ppbar @ 1.96 TeV = 64.000 [ { pairs
— statistics concentrated for pairs at rest

~20 papers by CDF and DO on tt resonance
searches

&First fully unfolded do/dM_ measurement
cscl CDF, PRD77, 051102, 2008) published recently

— mass reach (heaviest observed pair) ~ 1 TeV
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Tevatron, where the top was born

— 8 fb” ppbar @ 1.96 TeV = 64.000 tt pairs
» tops produced ~ at rest,

- heaviest observed pairatm =1 TeV
* Measurements of its mass to < 1 %
» Cross-section in good agreement with SM prediction

LHC, the first top factory

Even if in the early days luminosity and center-of-mass
energy are less than nominal design values:

— 200 pb” pp @ 10 TeV = 80.000 tt pairs
Bt - 11fb” @ 7 TeV (envisaged 2011) similar
i
CSIC

* Double the world's top sample
U « Much larger increase in statistics for high p_tops
D
b,



For an, admittedly somewhat unfair, comparison of the sensitivity of
resonance searches in different di-object final states, express the

sensitivity as a lower limit on the mass of a sequential Z'
(i.e. a heavy sister of the SM Z boson, with identical couplings to SM particles)

di-jets M, > 750 GeV,
limits on strongly coupled states in the range 600 GeV — 1.2 TeV

di-jets Competitive with Tevatron very early (100 pb™)

22| Tevatron — 81’ ppbar @ 1.96 TeV = 64.000 tt pairs LHC early days — 200 pb” pp @ 10 TeV = 80.000 tt pairs
s  tops produced ~ at rest, « 1fo7 @7 TeV (envisaged 2011) similar

) » heaviest observed pair ~ 1 TeV » A top factory!

0 » ~20 papers on tt resonance searches - especially for high p_tops




Model-independent limit on resonances - |

All resonances are equal, but some ....
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1 2, T=34%M,ocxBR (X->tt) <1 pb

tt mass distribution is affected by gluons radiated off top quarks
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The numbers above are examples, but in any given model (spin, charge) the rate
and width are tightly connected. In particular, for a given width the maximum
oXxBR (qg-> X-> tt) is obtained by setting:

g, =35Xg,

g = 0 for all other couplings
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Interference with SM production for coloured resonance:
destructive for low mass (see Les Houches 2009, to be published)



tt event “at rest” “Transition region” “Mono-jet”

———

Increasing invariant mass of the tt system

« Reconstruction of the tt mass spectrum is highly non-trivial.

» Resolved approach: resolve all partons
1l * Mono-jet: reconstruct full top decay as a single jet

O * Forget about competing with di-lepton channels
™ « Confirm resonances with significant BR to leptons

« Concentrate on top-philic models



ATLAE Atlantis event: JiveshdL_62 F4_0F257F rumbd 34 w3257 geometrys <default>

Challenges for top
reconstruction at high p_

« Partons from top decay are
not resolved by jet
reconstruction algorithms

isolation of leptons
» Trigger & offline

ETrriEs resolution i

2 % {m)

tracking performance in jets
* Db-tagging

control samples
 calibration, b-tag)
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Probability that a simple distance
criterion (k) yields the correct

pairing of top and anti-top decay
products

Two effects at larger m_
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. Combinatorics trivially resolved: 50 % for m = 700 GeV
. Mono-jets form: 50 % at m_= 900 GeV (AR < 0.4) - 1.8 TeV (AR < 0.4)

¢ Can define two algorithms already:

Probability that partons from top decay merge in a
cone of a given AR size: 0.4 (left) or 0.8 (right)

« Standard-model oriented “resolved” for low mass (top x-section and mass

measurements)

* Mono-jet algorithm for large mass (> 2 TeV, ATL-PHYS-INT-2009-037)



Fit function :

f(x) = 1.62261x \1.81711x-607.785
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» Resonance mass resolution ~5 % in mass range from 700 to 1500 GeV.
» A sharp efficiency drop towards larger resonance mass

S % @ 700 GeV
<1% @ 1500 GeV

The sensitivity of the
standard approach for tt
resonances versus mass
and integrated luminosity
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ATL-PHYS-CONF-2008-008, ATL-PHYS-CONF-2008-016, ATL-PHYS-PUB-2009-081, ATL-PHYS-COM-2010-153
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QCD background |s under control
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EfflClency. reconstruction QCD rejection: 10%5 9% Mass resolution @ 2 TeV
+ selection stable with p_

Sensitivity: 95 % C.L. Limits on the cross-section X BR of a narrow resonance
After 1 fb™* at 14 TeV (if there are no deviations from SM predictions)

Mono-jet approach:
550 fb
160 fb

Resolved reconstruction:
8 pb
3.5 pb

Significantly increased sensitivity for large resonance mass

form = 2 TeV
form = 3 TeV

form=1 TeV
form = 1.5 TeV



luminosity ratio

ATLAS study of potential of the early runs evaluated in detail for the

semi-leptonic final state (The ATLAS collaboration, Searching for tt resonances
using early ATLAS data, ATL-COM-PHYS-2010-153, approval process ongoing)
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« Reconstruction for complete tt mass
spectrum, merging ideas from
resolved and mono-jet approaches

 Evaluation of 1 TeV in early LHC
scenarios (7, 10 TeV, 100s of pb™)

« Take into account non-negligible
width

* Early surprises are possible!

See also: CMS-PAS-TOP-09-009, CMS-PAS-JME-09-
001, CMS-PAS-EX0O-09-002, CMS-PAS-EX0O-09-008
and Roberto Chierici's talk in this workshop

Signal x-sec for M = 1 TeV much reduced due to reduced LHC cms energy. However:

* Qq initiated processes suffer less

Dominant background reduced even more



Smarter analysis may increase sensitivity

Paola Ferrario, German Rodrigo, Charge asymmetries of top quarks: A Window to new
physics at hadron colliders, J.Phys.Conf.Ser.171 (2009) 012091

Analysis of A_ at the Tevatron

(Kuhn, Rodrigo, 1998, Antunano, Kuhn, Rodrigo, 2008)

m-dependent measurement performed by CDF (Conf. Note 9724, PRL101 (2008)

202001) and DO(PRL101 (2008) 202001)

An asymmetry can also be defined at the LHC:

A (yer) — Ni(lyl < ye) — Ni(lyl < ye)

Ne(lyl < ye) + Ne(lyl < ye)
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http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Ferrario%2C%20Paola%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Rodrigo%2C%20German%22

Top polarization: top decay products retain memory of top polarisation.

Yukawa interactions and gauge interactions have opposite handedness. Correlated

polarisation of t and anti-t (revealed through lepton angular distributions) are an
indication of new physics (or Higgs boson)

Godbole, Rindani, Rao, Singh, AIP Conf.Proc.1200:682-685,2010,
arXiv:0911.3622 [hep-ph], R. Singh, Les Houches 09

Anomalous couplings: General tbW vertex can be written as

i{,l’ﬂt"r

g
— | (1P + firPr) ——— (i — pdv (f21.Pp + fapPr)
V2 my

INSM,f =1,f =f =f =0,

. Deviations from these values will denote “anomalous” couplings. Current liimits
%8 Bernreuther, ). Phys. G., Nucl. Part. Phys. 35 (2008)

' SN-ATLAS-2007-064
-
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Standard Model: the Wtb coupling is purely left-handed at the tree level and its
strength governed by V., ~ 0.999

(assuming three generations of quarks and the unitarity of CKM matrix)
New physics may lead to departure from the SM value for V_ or new radiative contributions

Flavor Changing Neutral Current (FCNC) are strongly suppressed in the SM by the (GIM) mechanism, but
may appear at tree-level in SUSY, 2 Higgs Doublet Models and models with exotic vector-like quarks
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Are these extremely small branching ratios accessible experimentally?
LEP HERA  Tevatron

We haven't gotten very close, so far.
But, the LHC is the first top factory!

BRt — 3@ 7.8% A%
BRt —qY) 24%  O7%%
BRt —> 17.0% 13%

3 7%
32%

0.1-1%

Study of ATLAS sensitivity to FCNC top decays, SN-ATLAS-2007-059
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Derive 95 % CL limits using the modified fequentist likelihood method (A.L. Read,
Modified frequentist analysis of search results (The Cls Method), 2000, CERN Report 2000-005)

Convert limits into limits on branching ratios using SM tt cross-section

-1s Expected 10
43x10° 1.1x10% 1.9x10°
45x10* 8.3x10* 1.3x10°
3.8x 10" 6.8x10* 1.0x103
1.3x102 2.1x107? 3.0x107?
1.0x 102 1.7 x 102 2.4x107
7.2x10° 1.2x102 1.8x102
55x10° 9.4x10° 1.4x102
2.4x10° 42x10° 6.4x10°
1.9x10° 2.8x10° 43x10°

+/- 1 o includes statistical error and systematic effect of jet energy calibration, luminosity,
top quark mass, background cross-section, ISR/FSR, Pile-up, Generator, y*



Here: tt+tt
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Probes a very interesting set of BSM scenarios 1
KK gluon (with strong preference for top quarks as in RS setup) - —————
New states that only couple to top quarks. G. Servant (to be published) reconstructed mass (GeV)

=i | top compositeness, Lillie, Shu, Tait; Kumar, Tait, Vega-Morales; Pomarol, Serra

sic| Relatively easy to isolate (same-sign lepton), but will we ever be able to
°X reconstruct such events?
~ See proceedings Les Houches 09 (to be published) and Lea Gauthier's talk in this workshop.



The top quark may prove to be & ATLAS 2-Jet Collision Event at 7 TeV
the “gateway” to new physics. A XPERIMENT o ‘
Resonance searches in tt final Fun 152166, Event 35473 89
states complement searches in
di-lepton, di-jet and di-boson
final states. Comprehensive
Monte Carlo study confirms early
sensitivity to very relevant BSM

scenarios (available soon).

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

My personal projection (known to be wrong sometimes):
2009 - top properties and exotics form a joint
— basic top reconstruction tools in place

H 2010 - first 7 TeV collisions

=5 — commission tools on data, top rediscovery
S 2011 - first sensitivity beyond existing limits
L Beyond - tt+X and top properties programme.



Looking for a challenging scenario, consider some of the new physics that
feeds into the 4 top final state is discovered at the LHC. Production of
heavy gluons, a new state that only couples to top and four top contact
interactions in an e*e"machine is not the first thing one thinks of.

e+ t

t

7 t
e _
t

Geraldine Servant, Marco Battaglia looking into CLIC potential
Here, consider the following preliminary numbers for signal
c(contact interaction) ~ 0.01 fb
6(1 TeV KK gluon) ~ 1.5 fb
6(360 GeV Z') ~ 4 fb (G. Servant, Higgs in space)

And backgrounds:
T o(SM tttt) = 0.02 fb
sel  o(ttWjj) = 0.4 fb
4 G(ttWW+Nj) = 0.6 b
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