Mixed neutralino dark matter in nonuniversal gaugino mass models

Debottam Das

Laboratoire de Physique Théorique Université de Paris-Sud 11

GDR Terascale plenary meeting, Saclay

Outline:

PHYSICAL REVIEW D 79, 095013 (2009)

Chattopadhyay, Das, Roy

- Introduction
- Motivation of the work :
 - 1. Dark matter (DM) satisfied zones in the supersymmetric (SUSY) models
 - 2. Can we propose any simple model where DM is heavily mixed ?
- Framework : Non Universal Gaugino Mass model (NUGM)
- Results and Discussion
- Conclusion

Introduction :

The evolution of $n_{\tilde{\chi}^0_1}$ is calculated by the Boltzmann equation:

$$\frac{dn_{\tilde{\chi}_1^0}}{dt} + 3Hn_{\tilde{\chi}_1^0} = - \langle \sigma_A v \rangle \left(n_{\tilde{\chi}_1^0}^2 - (n_{\tilde{\chi}_1^0}^{eq})^2 \right)$$

 $\tilde{\chi}_1^0$ can annihilate with other sparticles with approximately degenerate masses, known as "coannihilation" has also important contribution in $\langle \sigma_A v \rangle$

$$= < \sigma_A v >$$
depends on LSP composition :

$$\tilde{\chi}_1^0 = N_{11}\tilde{B} + N_{12}\tilde{W}_3 + N_{13}\tilde{H}_d^0 + N_{14}\tilde{H}_u^0.$$

 N_{ij} – matrix elements that diagonalizes the neutralino mass matrix

9 gaugino fraction : $F_g = |N_{11}|^2 + |N_{12}|^2$ $\tilde{\chi}_1^0$: gaugino like if F_g is very close to 1($\gtrsim 0.9$), $\tilde{\chi}_1^0$: higgsino like if $F_g \lesssim 0.8$.
Otherwise the LSP would be identified as a gaugino-higgsino mixed state

WMAP satisfied dark matter zones in SUSY Models: \tilde{B} LSP

$$ilde{\chi}^0_1 \equiv ilde{B}$$
 LSP :

Ref: Ellis et. al. hep-ph/0202110

- Bino does not possess any annihilations via SU(2) couplings
- $\tilde{B}\tilde{B} \rightarrow f\bar{f} \Rightarrow$ Bulk annihilation region \Rightarrow principal annihilation channel for small m_0 and small $m_{1/2}$ in mSUGRA
- $\tilde{B}\tilde{\tau} \rightarrow \tau\gamma, \tau Z, \tau h \Rightarrow$ Bino-stau coannihilation region \Rightarrow dominant channel in the parameter space for $m_0 \ll m_{1/2}$ where $\tilde{\tau}$ becomes NLSP
- $\tilde{B}\tilde{t} \rightarrow tg, tZ, bW^+, t\gamma... \Rightarrow$ Bino-stop coannihilation region \Rightarrow characterized by a very light $m_{\tilde{t}_1}$

• $\tilde{B}\tilde{B} \rightarrow f\bar{f}$ via A, H, h exchange \Rightarrow resonance annihilation characterized by $2m_{\tilde{\chi}_1^0} \simeq m_A, m_H \Rightarrow$ requires $\tan \beta \geq 50$ and relatively large m_0 and $m_{1/2}$ in mSUGRA

 \Rightarrow Will be tested at LHC (at least partially)

WMAP satisfied dark matter zones in SUSY Models: \tilde{W}, \tilde{H} LSP

$$\tilde{\chi}_1^0 \equiv \tilde{W}, \tilde{H}$$
 LSP :

Ref: Chattopadhyay *et. al.* hepph/0610077

- Wino or Higgsino LSP possess $SU(2)_L$ interactions
- Wino LSP is viable in scenario like mAMSB while Higgsino appears as LSP in mSUGRA (with large m_0 and large $m_{1/2}$) and in NUGM:200 model

• $\tilde{W}\tilde{W}, \tilde{H}\tilde{H} \rightarrow W^+W^- \Rightarrow$ principal annihilation channel

• \tilde{W} or \tilde{H} like LSP may strongly coannihilate with an almost degenerate lighter chargino or a neutralino $\Rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^+ \rightarrow u_i \bar{d}_i, \bar{e}_i \nu_i, AW^+, ZW^+, W^+h$, $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow u_i \bar{u}_i, d_i \bar{d}_i, W^+W^-$

• Annihilation cross-sections for both \tilde{W}, \tilde{H} LSPs are much larger compared to a \tilde{B} LSP \Rightarrow acceptable relic density only for larger values of \tilde{W}/\tilde{H} masses $(M_{\tilde{H}} \simeq 1 \text{ TeV} \text{ and } M_{\tilde{W}} \simeq 2 \text{ TeV})$

 \Rightarrow cannot be tested at LHC

Annihilation channels : A few diagrams

Fig-1. neutralino pair annihilation : (a) t-channel slepton and squark exchange, (b) near-resonant annihilation through a Higgs boson (c) t-channel chargino exchange

Co-annihilation channels : A few diagrams

Fig-2 : some co-annihilation processes : ((a),(b) and (c)) diagrams are important if the LSP is higgsino-like, and the last two diagrams are important if the LSP is \tilde{W} -like

Co-annihilation channels : A few diagrams

Fig-3 : Dominant co-annihilation processes for \tilde{B} LSP

 ${\tilde \chi}_1^0 \equiv {\tilde B} - {\tilde H} \, {\sf LSP}$:

 \bullet The thin WMAP satisfied region near REWSB boundary \Rightarrow interesting as can be discovered at LHC

• Fine-tuning is within acceptable limit \Rightarrow Hyperbolic Branch - Focus Point solution \Rightarrow commonly known as HB/FP zone

• LSP is a mixed state of $\tilde{B} - \tilde{H} \Rightarrow$ recently named as well tempered neutralino

• In this work we explore the possibilites of having other mixed LSP states like $\tilde{B} - \tilde{W}$, $\tilde{B} - \tilde{W} - \tilde{H}$

 Usually such a mixed LSP can be achieved in the non universal gaugino mass models (NUGM) ⇒ previous works based on the NUGM models can be classified into two categories

- 1. Gauginos belonging to a representation of a 'Grand Unified Gauge Group' (GUT) \Rightarrow having definite mass relations at the GUT scale (M_G)
- 2. Gauginos do not possess any definite mass relations at the M_G

Motivation : Why well tempered neutralino scenarios are interesing

- The over-abundance of dark matter from Bino-dominated LSPs is balanced by the large LSP pair-annihilation cross section due to Higgsino mixing
- A mixed Bino-Higgsino or Bino-Wino LSP is expected to give cosmologically compatible DM relic density for sub-TeV LSP masses an be accessible at LHC
- For mSUGRA Bino-Higgsino DM ⇒ a narrow strip at the edge of the mSUGRA parameter space ⇒ very restricted
- In this work we explore the prospects of these mixed LSP scenarios in the context of NUGM models
- we consider two scenarios having : (i) Bino-Higgsino LSP and (ii) Bino-Wino or Bino-Wino-Higgsino LSP
- Solution We investigate the expected signals in direct and indirect DM detection experiments \Rightarrow indirect detection signals in the form of high energy neutrinos or line and continuum γ rays coming from DM pair-annihilation inside the Sun/ galactic core is explored
- We discuss the expected collider signatures at LHC

- In the minimal version of SUGRA (mSUGRA) global SUSY is assumed to be broken at the gauge coupling unification scale or GUT scale:($M_G \sim 2 \times 10^{16}$ GeV) in the observable sector
- One further assumes the matrices for scalar squared masses and the trilinear parameters to be flavor diagonal and universal
- \blacksquare Gaugino masses are also universal at the M_G
- Renormalisation group evolutions(RGE) from M_G determine low energy soft SUSY breaking parameters at the EW(electro-weak scale)
- In mSUGRA, hidden sector can be paramterized by the following five parameters at $Q = M_G$. $m_0 \sim$ universal scalar mass $m_{1/2} \sim$ universal gaugino mass $A_0 \sim$ universal trilinear coupling $\tan \beta = \frac{\langle H_u \rangle}{\langle H_d \rangle}$ $sign(\mu) \sim$ sign of μ parameter

REWSB:

Radiative breaking of electro-weak symmetry is used to find μ and B at $Q = M_Z$

$$\frac{1}{2}M_Z^2 = \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2\beta}{\tan^2\beta - 1} - |\mu|^2 + \Delta_R$$
$$\sin 2\beta = \frac{2|B\mu|}{m_{H_d}^2 + m_{H_u}^2 + 2\mu^2}$$

where, Δ_R is found from the one loop radiative correction to the Higgs potential

- For tan $\beta > 5$, the first REWSB condition leads to $\frac{1}{2}M_Z^2 + |\mu|^2 = -m_{H_u}^2$

In SUGRA models gaugino masses originate from

$$\mathcal{L}_{\text{gaugino}} = \left[\frac{1}{4}e^{-\mathcal{G}/2}\mathcal{G}^{a}(\mathcal{G}^{-1})^{b}_{a}(\partial f^{*}_{\alpha\beta}/\partial \phi^{*b})\right]\lambda^{\alpha}\lambda^{\beta} + \text{h.c.}$$

- Non minimal choice of $f_{\alpha\beta}$ produces nonuniversal gaugino masses at the M_G
- Solution I f_{αβ} depends on the chiral superfields and transforms under the symmetric product of the two adjoint representations ⇒ has been assumed to be real for simplicity
- Considering SU(5) as the GUT group $f_{\alpha\beta}$ can belong to any of the following representation

 $(24\otimes 24)_s = 1 \oplus 24 \oplus 75 \oplus 200$

NUGM models : Contd..

If SU(5) is broken down to $SU(3) \times SU(2) \times U(1)$ by the use of of Higgses, then $M_i(M_G) = m_{1/2} \sum_r C_r n_i^r$, where C_r 's give the relative weights of each contributing representation and n_i^r characterize the Higgs vacuum structure of the irreducible representation r

r	Label	M_3^G	M_2^G	M_1^G
1	mSUGRA	1	1	1
24	NUGM:24	2	-3	-1
75	NUGM:75	1	3	-5
200	NUGM:200	1	2	10

Here we consider gauge kinetic term to receive contribution from both singlet and a nonsinglet representation of GUT group namely from singlet and the 75-dimensional, and the singlet and the 200-dimensional representations of the SU(5) group

NUGM Models :

we consider two models where gauge kinetic function f_{αβ} contains a mixture of
 : (i) singlet plus 75-plet superfields (1 + 75) and
 (ii) singlet plus 200-plet superfields (1 + 200)

Solution We adjusted the relative contributions from the two superfields by introducing $\alpha_{75}, \alpha_{200}$ for the two models

DM phenomenology is guided by the composition of the lightest neutralino \Rightarrow EW scale values of M_1, M_2 and μ are the key \Rightarrow considering one-loop RGEs one has

$$M_{1} = (\alpha_{1}/\alpha_{G})M_{1}^{G} \simeq (25/60)M_{1}^{G}$$

$$M_{2} = (\alpha_{2}/\alpha_{G})M_{2}^{G} \simeq (25/30)M_{2}^{G}$$

$$M_{3} = (\alpha_{3}/\alpha_{G})M_{3}^{G} \simeq (25/9)M_{3}^{G}$$

$$\mu^{2} + \frac{1}{2}M_{Z}^{2} \simeq -0.1m_{0}^{2} + 2.1M_{3}^{G^{2}} - 0.22M_{2}^{G^{2}} - 0.006M_{1}^{G^{2}} + 0.006M_{1}^{G}M_{2}^{G} + 0.19M_{2}^{G}M_{3}^{G} + 0.03M_{1}^{G}M_{3}^{G}$$

NUGM : (1 + 75)

- $M_i(M_G) = \left(n_i^1(1 \alpha_{75}) + n_i^{75}\alpha_{75}\right)m_{1/2}$
- $\alpha_{75} \equiv 0.50 \Longrightarrow |M_1| \simeq |\mu| \simeq m_{1/2} < |M_2|$ for $m_0 \ge m_{1/2}$
- This leads to a mixed Bino-Higgsino LSP
- Decreasing m_0 leads to increase of $|\mu|$ and hence decrease of Higgsino fraction of LSP

NUGM : (1 + 200)

- $M_i(M_G) = \left(n_i^1(1 \alpha_{200}) + n_i^{200}\alpha_{200}\right)m_{1/2}$
- $\alpha_{200} \equiv 0.1 \Longrightarrow |M_1| \simeq |M_2| \Rightarrow$ leads to a mixed Bino-Wino LSP

• Increasing m_0 leads to decrease of $|\mu|$, resulting in a triply mixed Bino-Wino-Higgsino LSP in the large m_0 region

We have found the optimised mixing parameters to be $\alpha_{75} = 0.475$ and $\alpha_{200} = 0.12$ so as to get the most favourable DM relic density for most of the parameter space

Results:: NUGM : (1 + 75)

- Almost half the parameter space corresponds to DM relic density within $\Omega_{CDM}h^2 = 0.05 0.2.$
- The upper band \Rightarrow equal admixture $\tilde{B} - \tilde{H}$ and lower band is primarily \tilde{B} dominated \Rightarrow approximate degeneracy among the three lighter neutralinos ($\chi^0_{1,2,3}$) and the lighter chargino ($\tilde{\chi}^+_1$) is observed

leading annihilations/coannihilations : upper band : $\chi_1^0\chi_1^0, \chi_1^0\chi_2^0, \chi_1^0\tilde{\chi}_1^{\pm} \rightarrow WW, ZZ, f\bar{f}$ (both via s and t – channel processes) lower band : $\chi_1^0\chi_2^0, \chi_2^0\chi_2^0, \chi_2^0\tilde{\chi}_1^{\pm}$

 $\chi_1^0 \chi_1^0, \ \chi_1^0 \chi_2^0, \ \chi_1^0 \tilde{\chi}_1^+ \rightarrow t\bar{t}, \ b\bar{b}, \tau\bar{\tau}, \ t\bar{b}, \ \tau\nu_{\tau}$ (via s – channel A, H, H⁺)

Results : Spectra

parameter	Α	В	С	D	E	F
$m_{1/2}$	300	600	800	300	600	800
m_0	1325	1400	1340	185	550	800
μ	268	496	654	323	560	694
M_1	242	493	662	237	489	660
$m_{ ilde{\chi}_1^0}$	227	468	631	231	481	645
$m_{\tilde{\chi}^0_2}$	254	489	649	302	552	689
$m_{ ilde{\chi}_3^0}$	289	524	687	334	571	711
$m_{ ilde{\chi}^0_A}$	501	970	1285	490	957	1277
$m_{\tilde{\chi}_1^+,\tilde{\chi}_2^+}$	255,501	490,970	649,1285	304,491	552,957	689,1277
$m_{ ilde{g}}$	794	1437	1845	725	1381	1809
$m_{ ilde{t}1}$	903	1232	1435	485	965	1280
$m_{ ilde{t}_2, ilde{b}_1}$	1256,1246	1704,1694	1993,1983	727,651	1367,1288	1800,1712
$m_{\tilde{l}}$	1300-1400	1400-1600	1440-1680	280-440	680-950	960-1300
$m_{ ilde q_{1,2}}$	1400-1500	1800-1940	2000-2220	650-750	1300-1480	1725-1965
$\underline{m_A(\simeq m_{H^+}^{'}, m_H)}$	1382	1648	1786	534	1091	1460

Results:: NUGM : (1 + 200)

- LSP is an equimixture of Bino and Wino $(\tilde{B}-\tilde{W})$, along with a significant Higgsino component in the $m_0 > 1$ TeV region
- χ^0_1 can also be equally mixed with $\tilde{B}\text{-}\tilde{W}\text{-}\tilde{H}$
- Degeneracy among the two lighter neutralinos $(\chi_{1,2}^0)$ and the lighter chargino $(\tilde{\chi}_1^{\pm})$ is observed
- leading annihilations/coannihilations \Rightarrow $\chi_1^0\chi_1^0, \chi_1^0\chi_2^0, \chi_1^0\tilde{\chi}_1^{\pm} \rightarrow WW, ZZ, f\bar{f}$ (both via s and t – channel processes) $\chi_1^0\chi_1^0, \chi_1^0\chi_2^0, \chi_1^0\tilde{\chi}_1^{+} \rightarrow t\bar{t}, b\bar{b}, \tau\bar{\tau}, t\bar{b}, \tau\nu_{\tau}$ (via s – channel A, H, H⁺) (on the upper strip of the lower band)

Results : Spectra

parameter	Α	В	С	D
$m_{1/2}$	725	900	725	900
m_0	1450	1357	590	950
μ	792	983	846	1009
M_1	652	814	646	811
$m_{ ilde{\chi}_1^0}$	633	798	633	797
$m_{ ilde{\chi}_2^0}$	657	818	650	815
$m_{ ilde{\chi}_3^0}$	794	985	848	1011
$m_{ ilde{\chi}^0_A}$	822	1009	869	1032
$m_{\tilde{\chi}_1^+,\tilde{\chi}_2^+}$	643,818	807,1005	641,865	806,1028
$m_{ ilde{g}}$	1700	2045	1637	2017
$m_{ ilde{t}_1}$	1460	1649	1216	1540
$m_{ ilde{t}_2, ilde{b}_1}$	1813,1801	2013,2001	1478,1452	1860,1843
$m_{\tilde{l}}$	1535-1555	1505-1530	800-830	1160-1190
$m_{ ilde{q}_{1,2}}$	2000-2050	2170-2240	1520-1600	1950 —2040
$m_A(\simeq m_{H^+}^{-}, m_H)$	1726	1799	1174	1546

Dark Matter detection: Direct detection

- The techniques are based on the measurement of the recoil energy spectrum of the nucleus which contains the information of the WIMP-target scattering
- Effective lagrangian for elastic scattering between neutralino-nucleon in MSSM: $\mathcal{L} = \alpha'_q \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q_i} \gamma_\mu \gamma^5 q_i + \alpha_q \bar{\chi} \chi \bar{q_i} q_i$. α_q and α'_q contain all SUSY model information

2nd term : WIMP-nucleon SI scattering \Rightarrow Higgs exchange is dominant 1st one : WIMP-nucleon SD scattering \Rightarrow Z exchange is dominant

Indirect detection techniques are based on the detection of secondary particles that come out of dark matter (DM) annihilation in the over-dense region of the universe

Neutralinos may be captured and accumulated near the center of the astrophysical object like Sun => SD scattering is the dominant mechanism for trapping of neutralinos via interactions with the hydrogen within the Sun

Neutrinos may come out via the decay of the secondary particles following the pair-annihilation of neutralinos

$$\chi\chi \Longrightarrow W^+W^- \Longrightarrow \mu\nu_{\mu}..., \quad \chi\chi \Longrightarrow Q\bar{Q} \Longrightarrow q\mu\nu_{\mu}...$$

The neutrinos may be detected through their charged current interactions which results into muon tracks inside a detector

The annihilation rate at equilibrium is balanced by the DM capture rate inside the Sun \Rightarrow the resulting neutrino signal is $\propto \chi_1^0 - p$ cross-section

Indirect Detection : Photon signal

We focus on the γ -rays originating from galactic center (GC) \Rightarrow depends upon DM density ρ_{χ}^2 and $\langle \sigma_i v \rangle \Rightarrow$ one has following possibilities :: i) monochromatic γ -rays :

- This signal arise from processes like $\chi\chi \to \gamma\gamma$ and $\chi\chi \to Z\gamma$
- Signal will be interesting when χ_1^0 possesses significant \widetilde{W} or \widetilde{H} component
- Signal is small because of loop suppression

• It is clean and mono-energetic with energies $E_{\gamma}=m_{\chi}$ and $E_{\gamma}=m_{\chi}-m_Z^2/4m_{\chi}$ respectively

ii) Continuum γ -rays :

• Continuum γ -rays arise from neutralinos annihilating into a variety of SM particles \Rightarrow hadronisation and production of π^0 would follow

• $\pi^0 \rightarrow \gamma \gamma$ would produce a huge number of photons with varying energies

 $\chi\chi \Longrightarrow W^+W^-, \ Q\bar{Q}, \ ZZ \Longrightarrow \pi^0 \Longrightarrow \gamma\gamma$

• Continuum γ -rays would produce fluxes that are 2 to 3 order of magnitude more than the that of monochromatic γ -rays

• It lacks of distinctive features which can exclude other more common sources of production if a signal is believed to be found

Results & Discussion : Direct detection

Results & Discussion : μ flux

- Model prediction for the rate of muon signal events, resulting from these high energy neutrinos, in a km² size neutrino telescope
- Again upper and lower shaded (red) branches correspond to the upper and lower WMAP satisfying branches
- One sees a very promising signal with ≥ 10 events/year at the IceCube

Monochromatic γ -ray:

- We assume NFW profile of DM distribution
- \bullet The amplitude is $\propto Z_{H}^{2}$ of the neutralino DM
- The amplitude is $\propto Z_W^2$ of the neutralino DM \Rightarrow Wino has a large Isospin gauge coupling \Rightarrow the resulting signal is at least an order of magnitude larger than the (1+75) case
- The upper and lower shaded (red) branches \Rightarrow upper and lower WMAP satisfying branches
- Fermi Gamma-ray Space Telescope (FGST) experiment (formerly Gamma-ray Large Area Space Telescope (GLAST)) would be able to probe photon-flux as low as $\leq 10^{-10} \mathrm{cm}^{-2} \mathrm{s}^{-1}$

Continuum γ -ray:

• The $b\bar{b}$ channel is the most prominent channel for the continuum γ -rays signal, the WW and ZZchannels are also very significant

 Again upper and lower shaded (red) branches correspond to WMAP satisfying branches of respectively. The separation is barely visible in the (1+200) model

• The red strip on the top right corresponds to the WMAP satisfying zone which is dominated by the resonance channel

• Fermi Gamma-ray Space Telescope (FGST) experiment (formerly Gamma-ray Large Area Space Telescope (GLAST)) would be able to probe photon-flux as low as $\leq 10^{-10} {\rm cm}^{-2} {\rm s}^{-1}$ Signatures of the (1 + 75) and (1 + 200) Models

1 + 75 model :

- $m_{ ilde{t}_1} < m_{ ilde{q}_{1,2}}$ (~ 30%) and $m_{ ilde{t}_1} < m_{ ilde{g}}$
- $pp \to \tilde{g}\tilde{g} \to tt\tilde{t}_1\tilde{t}_1, \quad pp \to \tilde{t}_1\tilde{t}_1$
- $\tilde{t}_1 \rightarrow t \chi^0_{1,2,3}, \ b \tilde{\chi}^+_1$ via gauge (Yukawa) coupling of \tilde{t}_1
- 4b + isolated multilepton + missing p_T or 2b + isolated multilepton + missing p_T
- 1 + 200 model :
 - $\bullet \; m_{\tilde{t}_1} < m_{\tilde{q}_{1,2}} \;, \; m_{\tilde{g}}$
 - $\tilde{t}_1 \rightarrow t \chi^0_{1,2,3,4}$, $b \tilde{\chi}^+_2$ since $(\tilde{\chi}^+_2, \chi^0_{3,4})$ are now Higgsino dominated
 - Search strategy is very similar
- LHC signal is quite common like the FP zone of mSUGRA
- $m_{\tilde{t}_1}$ is lighter due to small m_0 , also one has $m_{\tilde{t}_1} < m_{\tilde{g}}$ which are probably unlikely in mSUGRA

Summary

- Solution We consider two non-universal gaugino mass scenarios where $f_{\alpha\beta}$ entails chiral superfields that transforms as (i) singlet and the 75-dimensional or (ii) singlet and the 200 dimensional representation of SU(5)
- We choose mixing parameter to have
 (i) $\chi_1^0 \sim \tilde{B} \tilde{H}$ or
 (ii) $\chi_1^0 \sim \tilde{B} \tilde{W}$, $\tilde{B} \tilde{W} \tilde{H}$
- we have analyzed DM properties and have obtained broad regions of parameter space in the $m_0 m_{1/2}$ plane that satisfy the WMAP data
- We have further computed the direct and indirect detection rates of neutralino DM in the two models
- Finally, a few distinctive features of the expected LHC signals of these models are mentioned

THANK YOU