Dark Matter searches with H.E.S.S.

Aion Viana

IRFU, CEA-Saclay

A. Viana

GDR Terascale@Saclay

The H.E.S.S. telescope array

Array of four Imaging Atmospheric Cherenkov Telescopes located in Namibia (1800m a.s.l.)

- 13 m diameter telescopes : 107 m² each
- Observations on moonless nights, ~1000h/year
- Field of view of 5°
- Stereoscopic reconstruction
- Angular resolution < 0.1° $/\gamma$
- Energy threshold (zenith) ~ 100 GeV
- Energy resolution ~ 15%

Indirect dark matter searches through gamma-rays

Gamma-ray flux from annihilation of a WIMP:

A. Viana

GDR Terascale@Saclay

Indirect dark matter searches through gamma-rays

Gamma-ray flux from annihilation of a WIMP:

A. Viana

GDR Terascale@Saclay

Dark Matter halo modeling

Self-annihilation rate :

$$\Gamma_{\chi} \approx \sigma v \frac{\rho_{\chi}^2}{m_{\chi}^2}$$

The DM density distribution (halo profile) comes from N-body numerical simulations or analytic solutions of the Jeans hydrodynamic equation

The parameters are found after observation of the stars dynamics(luminous density, velocity dispersion, velocity anisotropy...) inside the galaxy

Target candidates for indirect DM searches

Blind searches:

Candidates:

- intermediate mass black holes(IMBH) (HESS Collaboration (F. Aharonian et al). Jun 2008.)
- overdensity regions(« Clumps ») predicted by numerical simulations
 Constraints:
- needs large field-of –view of observation => hard with pointing observation i.e. HESS
 HESS results :
- no Clumps candidates so far
- upper limits on the IMBH flux used to constraint some DM models

Targeted searches:

Candidates:

- High DM density enviroments in the center of galactic halos predicted by theory and simulations
- The Milky-Way galactic center(GC) should be a high DM density environment but...
- Dwarf Sheroidals(dSph) galaxies are extremely DM-dominated evironments(high M/L) Constraints:
- GC has a too strong astrophysical background
- realistic DM halo modeling needed HESS results:
- GeV-TeV emission towards the GC, but spectrum not compatible with DM γ-ray emission
 results on dSph galaxies covered in this talk (H.E.S.S. Collaboration (F. Aharonian et al.). Oct 2006)
- results on **dSph galaxies** covered in this talk... (H.E.S.S. Collabor

HESS observations campaigns on dSph galaxies

• Four dSph galaxies (and candidates) studies published (or in process) by HESS

	d(kpc)	Virial mass (solar mass)	T _{obs} (h)	Observation Zenith angle	Tidal disruption
Sagittarius	24	3.0 x 10 ⁸	11	19°	\checkmark
Canis Major	8	3.0 x 10 ⁸ ??	10	10°	\checkmark
Sculptor	79	1.0 x 10 ⁹	11.8	14°	×
Carina	101	2.0 x 10 ⁸	14.8	34°	+/-

A. Viana

GDR Terascale@Saclay

Sensitivity curves to DM annihilation

$$N_{\gamma} = T_{\text{obs}} \int_{0}^{m_{DM}} A_{\text{eff}}(E_{\gamma}) \frac{d\Phi(\Delta\Omega, E_{\gamma})}{dE_{\gamma}} dE_{\gamma}$$

• The 95% C.L. limit on N γ provides a 95% C.L. limit on the velocityweighted cross section for a given DM profile:

$$\langle \sigma v \rangle_{\min}^{95\% \, C.L.} = \frac{8\pi}{\overline{J}(\Delta\Omega)\Delta\Omega} \times \frac{m_{\chi}^2 \, N_{\gamma,tot}^{95\% \, C.L.}}{T_{\text{obs}} \, \int_0^{m_{\chi}} A_{eff}(E_{\gamma}) \, \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}}(E_{\gamma}) \, \mathrm{d}E_{\gamma}}$$

The velocity-weighted cross-section is then calculated as function of the DM particle mass

 two candidates of Dark Matter particle are usually studied: - neutralino (SUSY) - Kaluza-Klein (UED) particles

A. Viana

GDR Terascale@Saclay

Sensitivity curves to DM annihilation

• The 95% C.L. limit on N γ provides a 95% C.L. limit on the velocityweighted cross section for a given DM profile:

$$\langle \sigma v \rangle_{\min}^{95\% \, C.L.} = \frac{8\pi}{\overline{J}(\Delta\Omega)\Delta\Omega} \times \frac{m_{\chi}^2 \, N_{\gamma,tot}^{95\% \, C.L.}}{T_{\text{obs}} \, \int_0^{m_{\chi}} A_{eff}(E_{\gamma}) \, \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}}(E_{\gamma}) \, \mathrm{d}E_{\gamma}}$$

The velocity-weighted cross-section is then calculated as function of the DM particle mass

 two candidates of Dark Matter particle are usually studied: - neutralino (SUSY) - Kaluza-Klein (UED) particles

A. Viana

GDR Terascale@Saclay

Sagittarius dSph

Constraints on neutralino dark matter Sensitivity curve at 95% C.L.: (HESS Collaboration (: F. Aharonian et al.). Nov 2007)

pMSSM models obtained with DarkSUSY4.1

⇒ large scan of the parameter space

• Some pMSSM models with higgsino-like neutralino excluded

• **BUT** halo modeling of Sgr dSph too hard due to tidal stripping

$$\overline{J} = 2.2 - 75 \times 10^{24} GeV^2 cm^{-5}$$

10⁻²⁰

GDR Terascale@Saclay

Canis Major overdensity

(HESS Collaboration (: F. Aharonian et al.). Sep 2008)

• Disrupted dwarf galaxy or simply a part of the warped Galactic disk?

• On the assumption of a dSph it has a <u>very delicated</u> halo modeling

$$\overline{J} = 5.9 \times 10^{24} GeV^2 cm^{-5}$$

With the assumption: $M_{vir} = 3 \times 10^8 M_{sun}$

Sculptor and Carina dSph

Constraints on dark matter sensitivity curve at 95% C.L.: ر ه¹⁰⁻¹⁵ (10⁻¹⁵ ۳ ۳ ۵ ۷ ۲0⁻²⁰ PRELIMINARY ZELIMINARY °_ms) ^ (m 20 ^ 20 20 √ 20 10⁻²¹ 10-21 10-22 10-22 IFW profile (β = const., c=20) NFW profile Cored profile (β = const., rc=0.05kpc) NFW profile (β = const., c=35) Cored profile (β = const., rc=0.5kpc) NFW profile ($\beta = \beta_{0M}^{AC}$, rc=0.5kpc) Cored profile ($\beta = \beta_{0M}^{AC}$, c=20) NFW profile ($\beta = \beta_{0M}^{AC}$, c=35) Cored profile ($\beta = \beta_{0M}^{AC}$, rc=0.5kpc) 10⁻²³ 10⁻²³ **Cored profile** Fermi limits for NFW profile HESS limits for Fermi's NFW profile 10-24 10-24 10⁻¹ 10 10^{2} 1 10⁻¹ 10 1 m_{DM}(TeV) m_{DM}(TeV) (a) Sculptor (b) Carina $\overline{J} = 0.2 - 6.4 \times 10^{23} GeV^2 cm^{-5}$ $J = 2.0 - 4.37 \times 10^{22} GeV^2 cm^{-5}$ Similar analyses were made for both galaxies

Various DM halo profile were studied in the case of Sculptor
 => helps to estimate the errors due to the halo modeling

GDR Terascale@Saclay

Gamma-ray signal enhancement effects

Particle physics enhancements i.e. Sommerfeld effect:

Low velocity QFT(Schrodinger equation) effect due the interaction of the DM particles with a Yukawa potential(weak force) in its annihilation procces

Very effective on the low-velocitiy regime!!

Astrophysics enhancements i.e. galactic substructures(« Clumps») :

Motivations: simulations results are scale invariant, so its contribution may be important inside dSph

BUT No significant effect towards dSphs center in a point-like analysis

Particle physics enhancements i.e. Sommerfeld effect in Sculptor and Carina dSph

≻Low-velocity dispersion: ~10.0 km s−1 for Sculptor and ~7.5 km/s for Carina
>Plot <σv>/S vs m_{DM}

GDR Terascale@Saclay

Summary

• IMBH and Clumps are in priciple good candidates, but their true distribution is very uncertain due to possible complex evolution inside the Galaxy(interaction with baryons...)

- The same for the GC => dynamical evolution and baryon interactions could sweep out the DM of the central regions or just hide the signal
- despite no signal detection so far, dSph remains as one of the most promising enviroments for Dark Matter searches

Summary on the dSph campaign:

	Motivations	Results	Problems
Sagittarius	 small distance from us high M/L 	•Some pMSSM models with higgsino-like neutralino excluded	 halo modeling very uncertain interaction with the MW disk must have disrupted it
Canis Major	 small distance from us overdensity environment 	 good constrains 	 real astrophysical nature under dispute very disrupted by tidal effects
Sculptor/ Carina	 far from the MW disk and center no significant disruption(at least in Sculptor case) 	 large DM halo profile uncertainty coverage good contrains with Sommerfeld effect 	 large distance from us

Sagittarius dSph

Constraints on Kaluza_Klein dark matter Sensitivity curve at 95% C.L.

Some KK models providing a relic density compatible with WMAP constraints are excluded in the case of the cored profile

GDR Terascale@Saclay

Dark Matter halo modeling

•From Jeans Equation:
$$M(r) = r \langle v_r^2 \rangle (\frac{d \ln \rho}{d \ln r} + \frac{d \ln \langle v_r^2 \rangle}{d \ln r} - 2\beta)$$

 $\begin{cases} \langle v_r^2 \rangle : radial velocity dispersion \\ \rho: luminous density \\ M: luminous + dark mass \\ \beta: anisotropy \\ & unknown \end{cases}$
•Assumed $\rightarrow \beta(r)$ $\stackrel{?}{\checkmark}$ - solve for M(r) to get ρ_{dark}
 $\stackrel{?}{\frown}$ - fit DM halo parameters to $\langle v_r^2 \rangle$

•Two differents types of DM halo profiles are produced:

-NFW profile: fit of (A,r_s) parameters to
$$\langle v_{r}^2 \rangle$$

-cored profile : $\langle v_{r}^2 \rangle$ assumed to be flat
- \Rightarrow analytic resolution of the Jeans equation
$$\rho_{core}(r) = \frac{v_a^2}{4\pi G} \frac{3r_c^2 + r^2}{(r_c^2 + r^2)^2}$$