FFAG injection studies

David Kelliher(ASTeC/STFC/RAL) J. Pasternak (Imperial College, London / RAL STFC)

> EUROnu week, Strasbourg 03 June 2010

Contents

- FFAG lattices
- Injection/Extraction schemes
- Distortion due to "special magnets"

FFAG lattices

Design criteria (J. Scott Berg)

- Number of cells a multiple of 4 for symmetry purposes
- 20 drifts allocated to injection/extraction systems plus unspecified hardware
- Must inject/extract both signs in one ring doublet looks impractical
- Three candidate lattices A FODO with a cavity cell per drift, and triplet with one or two cavity cells per lattice cell (FCDC,FDFC, FDFCC)

Candidate FFAG lattices (J. Scott Berg)

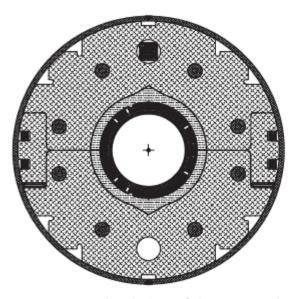
D field (T)	4.742932	5.090108	4.624750
D field (T) D gradient (T/m)	-25.723141	-13.774185	-16.530751
F length (m)	0.997549	2.238741	1.286477
F angle (mrad)	-20.394	-31.410	-26.106
F shift (mm)	5.157	1.716	9.154
F field (T)	-1.112544	-0.793097	-1.077459
F gradient (T/m)	24.734679	11.442032	16.318167
Cavity cells	60	116	88
RF voltage (MV)	763.066	1475.261	1119.163
turns	17.3	9.0	11.8
D radius (mm)	87	94	115
D max field (T)	7.0	6.4	6.5
F radius (mm)	115	200	153
$F \max field (T)$	3.9	3.1	3.6
Circumference (m)	519	521	546
Decay (%)	7.7	4.1	5.6
Cost (A.U.)	146.1	170.3	171.4

Injection/Extraction schemes

Injection/Extraction assumptions

- Each kicker and septum assumed to be 60cm shorter than long drift i.e. 1.4m or 2.4 m long
- All kickers have same top field, polarity may change
- Configurations must be mirror (anti)symmetric to allow use of one set of kickers by both muon signs
- Track 30 pi mm particle amplitude, i.e. the acceptance of the muon beam
- Aim for 2cm separation at entrance of septum
- No fringe field included

Superconducting magnet at J-PARC



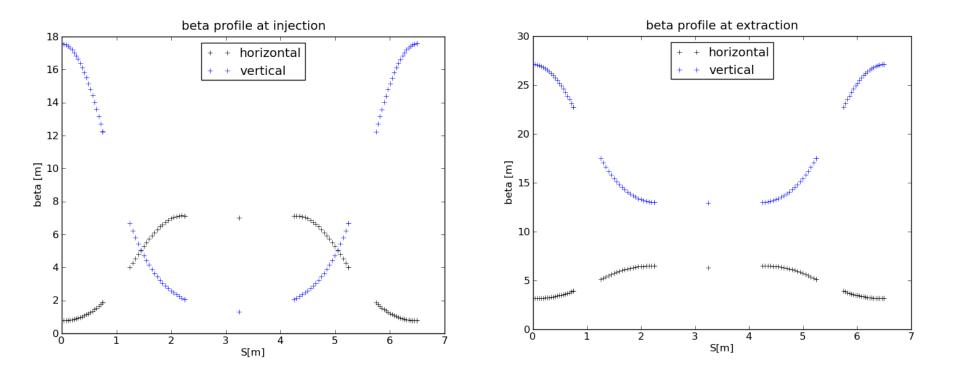
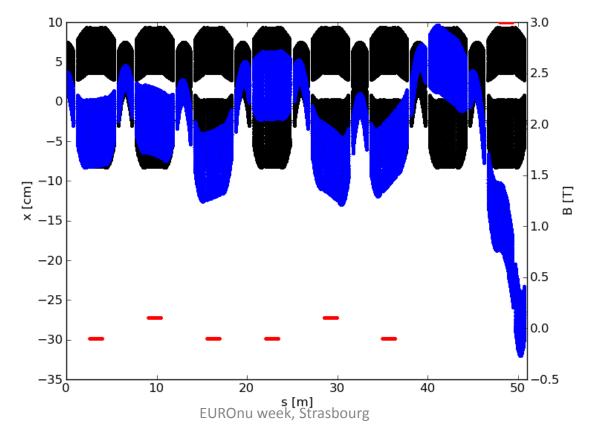

Figure 1: Cross sectional view of the superconducting combined function magnet, SCFM, for the 50 GeV proton beam line for the J-PARC neutrino experiment.

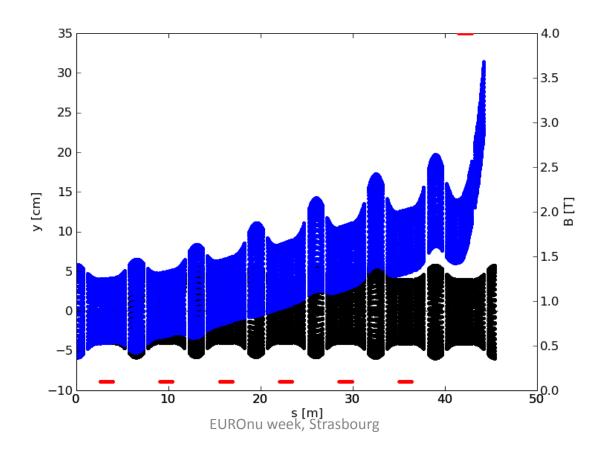
Table 1: Main Design Parameters for the SCFM				
Physical & Magnetic Length	3630 & 3300 mm			
Coil In. & Out. Diameter	173.4 & 204.0 mm			
Yoke In. & Out. Diameter	244 & 550 mm			
Shell Outer Diameter	570 mm			
Dipole & Quad. Field	2.59 T & 18.7 T/m			
Coil Peak Field	4.7 T			
Load Line Ratio	72 %			
Operational Current	7345 A			
Inductance & Stored Energy	14.3 mH & 386 kJ			

In the absence of magnet design – assume magnets will look like SCFM at J-PARC

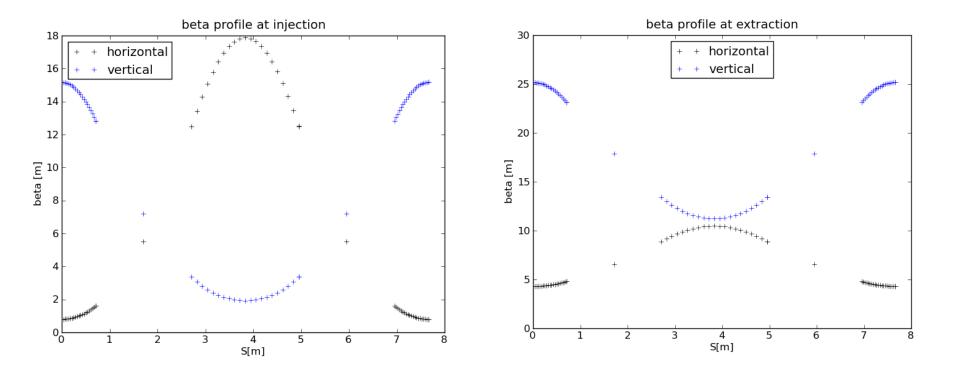
"Status of Superconducting Magnet System of the J-PARC Neutrino beam line " – T. Ogitsu et. al. IEEE. Trans. Appl. Supercond. Vol. 19, No. 3 June 2009


Triplet 1 – FDFC

Optics favour horizontal injection and vertical extraction

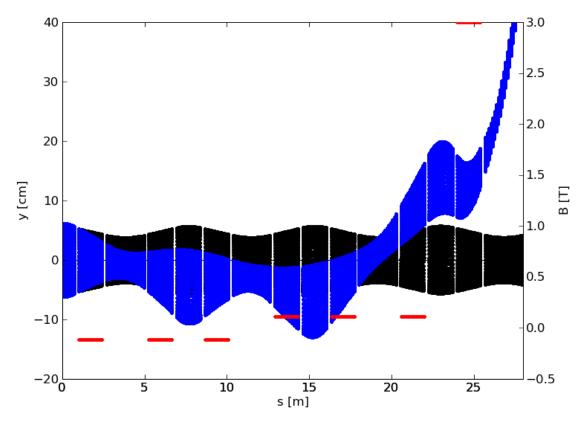

FDFC - Horizontal injection

- 6 kickers at 0.1025 T in consecutive drifts
- Septum at 3T
- Gap between kicked and circulating beam at septum entrance is 2cm
- F Magnet immediately after the septum require large aperture
- Injected beam 21cm from magnet axis of F before septum
- Kicker arrangement mirror-symmetric

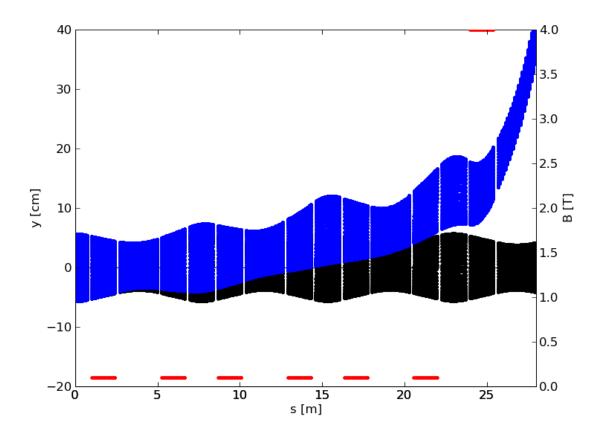


FDFC - Vertical extraction

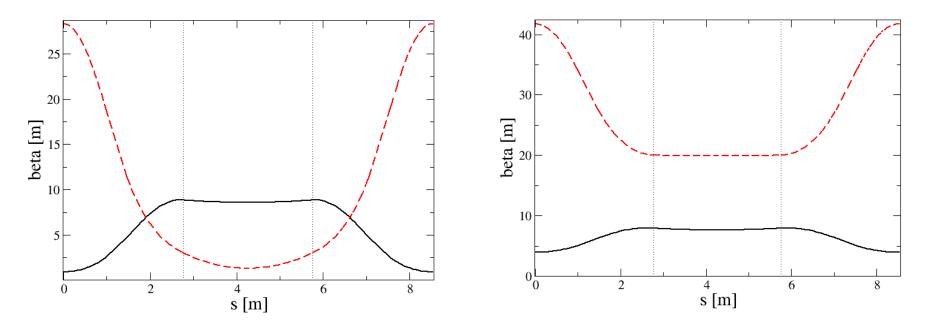
- 6 kickers at 0.103 T in consecutive drifts
- Septum at 4T
- Several magnets require large aperture
- Extracted beam 13cm from magnet axis of F after septum



FODO - FCDC

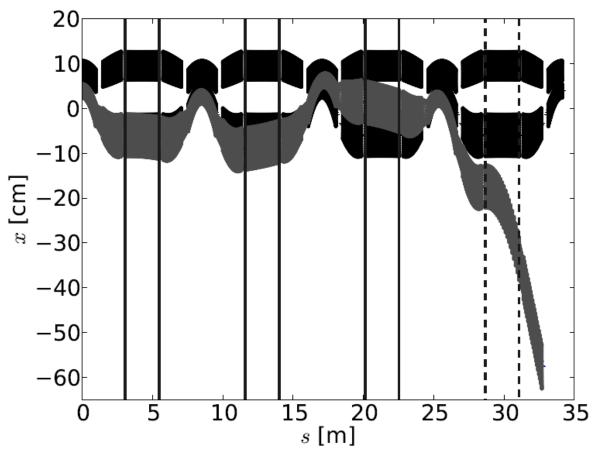

FCDC - Vertical injection

- 6 kickers at 0.113 T in consecutive drifts
- Septum at 3T
- F Magnet immediately after the septum require large aperture
- Injected beam 15cm from magnet axis of F before septum

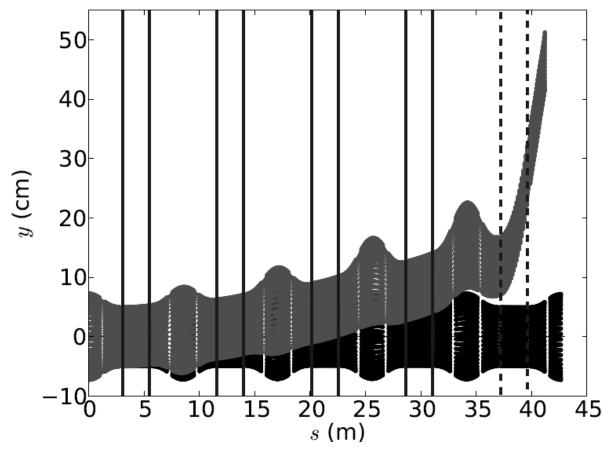


FCDC - Vertical extraction

- 6 kickers at 0.101 T in consecutive drifts
- Septum at 4T
- Several magnets require large aperture
- Injected beam 13cm from magnet axis of F before septum


Triplet 2 - FDFCC

Optics favour horizontal injection and vertical extraction

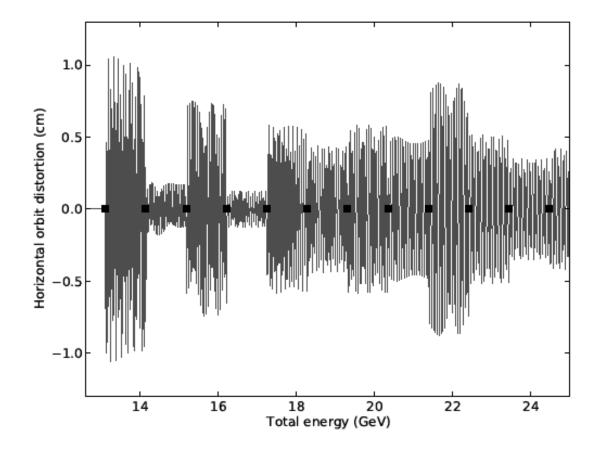

FDFCC - Horizontal injection

- 3 kickers at 0.089 T in consecutive drifts
- Septum at 2T
- F Magnet immediately after the septum require large aperture
- Injected beam 30cm from magnet axis of F before septum

FDFCC - Vertical extraction

- 4 kickers at 0.078 T in consecutive drifts
- Septum at 4T
- Several magnets require large aperture

Summary of parameters for injection/extraction (updated lattices)


	Trip	olet 1	FOD	0	Trip	let 2
Scheme	FDFC Injection	FDFC Extraction	FCDC Injection	FCDC Extraction	FDFCC Injection	FDFCC Extraction
Plane	Horizontal	Vertical	Vertical	Vertical	Horizontal	Vertical
No. Kickers	6	6	6	6	3	4
Kicker top field [T]	0.103	0.103	0.113	0.101	0.089	0.078
Septum top field [T]	>3	>4	>3	>4	2	4
Kicker/Sept um length [m]	1.4	1.4	1.4	1.4	2.4	2.4
Cells needed	8	8	5	5	5	6

Orbit distortion due to "special" magnets

- Special large aperture magnets needed to accommodate kicked beam
- Longer fringe field breaks the symmetry of the lattice
- Leads to difference in integrated field experienced by the beam dipole kick

	Injection Aperture (cm)	Extraction Aperture (cm)
F normal/special	23.5 / <mark>34.2</mark>	23.5/ <mark>41.3</mark>
D normal/special	17.7/-	17.7/ <mark>46.7</mark>

Orbit distortion due to special magnets

Distortion due to one set of large aperture triplet magnets required for extraction

Conclusion

- Triplet 2 looks the easiest from point of view of injection/extraction - uses fewer kickers and with lower peak field than other lattices
- Much progress has already been made on kicker magnet design. The design of the septa is underway.
- Orbit distortion created by long fringe field extent of large aperture magnets can be minimised by shifting the magnets (J. Pasternak).