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Overview

» The lattice

layout of the three cell types, on-axis magnetic field and (3 functions

» The components
design and performance of the solenoids and RF cavities

» Comparative tracking
evolution of the transverse and longitudinal phase spaces through the three cell

types

» Front-to-end tracking
a Gaussian beam tracked through the whole linac

» Problems and solutions
weak points of the current design and how to overcome them

» Conclusions and future work
physics and engineering challenges coming next



The lattice

- 3 functions have been derived
from on-axis magnetic fields for
the nominal energy (240 MeV)
and must be kept at the level as
the muons energy increases, by
rising up the solenoidal fields.

- lower linac 3 functions are not perfectly matched here since
the transitions have to be accurate to the third digit but this

has negligible impact on particle tracking.
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The components g caities

- a few RF cell layouts have been
investigated with the aim of
maximizing the transit time factor
T and implicitly the effective energy
gain AW, while keeping the surface
electric and magpnetic fields to a
minimum;

- in the end 3 = 1 design has been
choosen.

Total electric field for the linac single-cell cavities [EI [MV/m]

- due to the fact that the cavity length is slightly longer than half of the RF
wavelength, for a peak voltage of 26.17 MeM/m a sychronous particle would
gain 8.61 MeV instead of 10 MeV as intended;
- in practice, subject to the longitudinal particle distibution, the average gain
will be less by 10-20 %.

H B=1 ‘ 3 =09 3 =09 Study Il ‘
Parameter .
top middle not shown bottom
leav[m] 0.7448 0.67034 0.67034 0.8282
r[m] 0.6854 0.7042 0.6804 0.6641
fo[MHZ] 201.247 | 201.251 201.255 198.575
Q [10°] 24.67 19.6 18.8 26.7
T 0.650 0.716 0.726 0.591
E[MV/m] 26.17 27.19 27.83 26.38
|E|7X[MV/m] 21.70 24.87 29.45 19.75
[H|TX kA /m] 48.06 58.53 61.92 45.00
u[J] 712 772 797 747
A WMaX[MeV] 8.6142 9.0081 9.1336 8.8466




solenoids

- solenoids have been optimized
in order to minimize field
leackage towards the
neighbouring RF cavities by
designing two current-carrying
shells surrounded by a 50 mm
thick iron shield;

- 2D field maps have been
obtained with the Poisson code
and implementation into the
ROXIE code is on the way in
order to study the inherent
superconducting effects.
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Comparative tracking

- 1000 particles generated by GPT within Gaussian phase space distributions have
been tracked through all cell types cells in order to determine the beam acceptances;
- the normalized rms longitudinal emittance is expressed as:

mC2

g levs] = | ‘\/<t§><«f§>—<%tc>2
de
te = t—<t>
Ye = YT—<77>

- the normalized rms transverse emittance is expressed as:

gl [rmrad] = <'y>\/EXEy—\<xcyc><xéyé>—<Xc}/£><xé}’c>|
Ex[rmrad] = <7>\/<x3><xg2>—<xcxg>2

Xe = X—<XxX>

Xé = ﬁx—<,6x>

and similarily for y

- all tracking sessions have been performed with the GPT code making use of realistic

3D field maps.



longitudinal phase space fillamentation
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upper linac acceptances

orange: beam at the end of the cooling channel
green: Gaussian beam distributions used for tracking with £ = 3.02 7 mm mrad and &) =277 eV ms,

ot =0.25 ns, opg =5 %, <E> = 240 MeV, og, = 0.1, ox,y = 5cm
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longitudinal phase space through upper linac cell types

black: each RF phase optimized for maximum average acceleration
red: all RF phases shifted backwards by 50°

blue: RF phases shifted backwards by 60, 65, 70, 75, 80, 85, 90, 95, 100 and 105°

respectively
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middle linac acceptances

£, = 1.71 7 mm mrad and éH = 2.77 eV ms, ¢ = 0.25 ns, opg = 5 %, <E> = 240 MeV

- since 3 functions increase, transverse acceptance must decrease to accommodate the same beam size.
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lower linac acceptances

£, = 0.96 m mm mrad and éH = 2.77 eV ms, ¢ = 0.25 ns, opg = 5 %, <E> = 240 MeV

- transverse acceptance decreased again, implicitely lowering the whole linac acceptance to this value.
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Front-to-end tracking

£, = 0.96 7 mm mrad and g =277 eV ms, o¢ = 0.25 ns, opg = 5 %, <E> = 240 MeV

- the three 3 function levels are direclty correlated with the transverse beam size since €| = const.

initial longitudinal phase space

300
280
260
240
220
200

E [MeV]

180

-15-1-05005 1152253

t[ns]

y ' [rad]

initial vertical phase space

0.3
0.2
0.1
0
-0.1
-0.2

x ' [rad]

-0.3
-03 02 -01 0 01 02 03
y [m]

THE WHOLE LINAC (vertical projections)

initial horizontal phase space

0.3
0.2
0.1
[
-0.1
-0.2

-0.3
-03 02 -01 0 01 02 03

x [m]

y [m]

0 20

60 80
z[m]

x [m]

5665 ocooo

0 20

40




longitudinal phase space through upper linac

- efficient bunch compression scheme will keep most of the particles into the ori

phase space boundaries but the price to be paid is a poor acceleration rate, namely 5 MeV/cell at full power.
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longitudinal phase space through middle linac

- ignoring the bunch tail, the energy spread increases from 20 MeV to 40 MeV while the bunch length

remains roughly constant;

- an acceleration rate of about 8 MeV/cell has been achieved here.
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longitudinal phase space through lower linac

- an acceleration rate of about 7.6 MeV/cell has been achieved here;

- since the bunch length is virtually frozen at this stage, it becomes difficult to compress the bunch

energy spread (now reaching about 50 MeV) via the phase stability principle;

- the final energy is 735 MeV
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Problems and solutions

- with an average effective energy gain of about 7.5 MeV/cell there must be 66 + 22
= 88 RF cells to reach 900 MeV at the end of the linac;

- beam transverse acceptance decreased from 3.02 to 1.71 and then to 0.96

7 mm mrad as transverse 3 functions increased from 2.90 to 4.93 and then to 8.25 m
since the cells must be longer in order to accommodate longer cryo-modules;

- there is a significant transverse-to-longitudinal coupling, following the interplay
between the finge solenoidal fields and the non-negligible muon transverse velocities
(this makes their path differ in length);

- this coupling seems to be an aid when phasing the RF cells for bunch compression
and thus upper type cells can preserve the bunch to a smaller phase space area;

- building the whole linac with upper type cells only would increase the transverse
acceptance (by a factor of 3), improve bunch compression, eliminate the problem of
matching the transitions (source of particle losses), reduce the cost of the cryomodules,
keep the same amount of the RF cells at the expense of adding more solenoids;

- unless the linac lattice cells are modified, a significant effort has to be done for the
design of a cooling-to-linac matching section, which may result in another linac by

itself, increasing costs;



Conclusions and future work

- the whole muon linac has been simulated using Gaussian bunches and realistic field
maps for solenoids and RF cavities;

- there is a visible bunch compression in what concerns the longitudinal phase space;
- the 900 MeV target cannot be reached but there are a few possibilities of
overcoming this issue;

- for the time being cavity phasing has been done by hand since GPT doesn’t have an
algorithm to do bunch compression;

- cavity and solenoids field maps as well as the RF phasing method will be upgraded to
refine the results but in principle these results are all one can get with the current
lattice;

- a decision on the possible lattice changes will be taken soon after these results will

be compared to previous simulations preformed with Elegant at JLab.
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