

Beta Beams, EUROnu WP4

Beta Beam's Collective Effect Study

Christian Hansen EUROv MEETING 2010/06/02

Many thanks to: E. Benedetto, A. Chancé, E. Metral, G. Rumolo & B. Salvant

Introduction

- Beta Beam's physics reach is optimized for high intensity ions beams with short bunch length
- Collective Effects will limit the final performance of accelerators
- Collective Effects has not yet been studied in detail for the CERN Beta Beam complex
- Plan to study all machines for all ions (FP6: ⁶He & ¹⁸Ne, FP7: ⁸B & ⁸Li)
 - So far focused on the Decay Ring for ⁶He and ¹⁸Ne
 - Results shown are based on FP6 design (FP6 database) with some edited values

Outline

- Direct Space Charge & Laslett's Tune Shift
- <u>Transverse Broad Band Resonance:</u>
 - Transverse Mode Coupling Instabilities (TMCI) Limit
 - HeadTail Results
- Longitudinal Broad Band Resonance:
 - Longitudinal Parameters
 - Microwave Instabilities Limits
 - HeadTail Results

Laslett's Tune Shifts

- Laslett's Tune Shifts take into account both DSC and Image Fields:
 - A particle in a bunch feels the collective Coulomb forces due to fields generated by the charge of other particles in the bunch → Direct Space Charge (DSC) → tune shift
 - Also Image Fields due to the surrounding vacuum pipe cause tune shift
- Grouped into Incoherent and Coherent (DSC only Incoherent) where the coherent tune shifts are due to either Penetrating or Non-Penetrating Fields

• Incoherent Tune Shift $\Delta Q_{x,y}^{incoh} = -\frac{Nr_0R}{\pi\gamma\beta^2 Q_{x,y}} \left[\left(\frac{1-\beta^2}{B} + \beta^2 \right) \frac{\varepsilon_{x,y}^{incoh}}{h^2} + \frac{1-\beta^2}{2B} \frac{\varepsilon_{x,y}^{dsc}}{a_y^2} \right]$

Coherent Tune Shift using Penetrating Magnetic Fields

$$\Delta Q_{x,y}^{coh} = -\frac{Nr_0R}{\pi\gamma\beta^2 Q_{x,y}} \left(\frac{1-\beta^2}{B} + \beta^2\right) \frac{\varepsilon_{x,y}^{coh}}{h^2}$$

• Coherent Tune Shift using Non-Penetrating Magnetic Fields

$$\Delta Q_{x,y}^{coh} = -\frac{Nr_0R}{\pi\gamma\beta^2 Q_{x,y}} \left[\frac{1-\beta^2}{B}\frac{\varepsilon_{x,y}^{coh}}{h^2} + \beta^2\frac{\varepsilon_{x,y}^{incoh}}{h^2}\right]$$

Here added 1/2B myself, see backup slides

Here, neglected χ_e and \mathcal{F} (see Ng.) Physics of Intensity Dependent Instabilities USPAS 2002

Laslett's Tune Shifts

• The absolute value of the tune shifts should be < 0.2

SC	DR ¹⁸ Ne	DR ⁶ He
$\Delta \mathbf{Q}_{dsc_{\mathbf{x}}}$	-0.0409	-0.0083
$\Delta \mathbf{Q}_{dsc_{\mathbf{y}}}$	-0.0946	-0.0192
incoh		
$\Delta \mathbf{Q}_{\mathbf{x}}^{incon}$	-0.0409	-0.0083
$\Delta \mathbf{Q}_{y}^{incoh}$	-0.0946	-0.0192
$\Delta \mathbf{Q}_{x}^{\text{coh p}}$	-1.7470e-04	-3.5564e-05
$\Delta \mathbf{Q}_{y}^{\text{coh p}}$	-3.1937e-04	-6.5016e-05
$\Delta \mathbf{Q}_{\mathbf{x}}^{coh np}$	-6.2768e-05	-1.2765e-05
$\Delta \mathbf{Q}_{y}^{cohnp}$	-1.1475e-04	-2.3337e-05

- We see that the effect of the image forces are negligible relatively to DSC
- DSC is more crucial for low energy so SPS and PS might have a big DSC problem in Beta Beams ... to be studied in the future ...

Impedances

Y.H. Chin, Impedance and Wake Fields

Resonance Impedance

- Wake fields can be trapped in discontinuities (e.g. cavities) in the vacuum chamber
 - \rightarrow resonance impedances \rightarrow can be modeled with an RLC circuit:

Narrow Band (high Q)

Resistive Wall Impedance

• Due to resistive beam pipe the image current is slowed down \rightarrow wake field \rightarrow impedance

$$\begin{split} Z_{||,rw}(\omega) &= \frac{\omega}{2} (1-i) \frac{Z_0 \delta_{sk}(\omega) h}{2\pi b c} \approx (1-i) \frac{\omega R}{2bc} \sqrt{\frac{2\rho}{\varepsilon_0 |\omega|}} \\ Z_{\perp,rw}(\omega) &= (sgn(\omega) - i) \frac{Z_0 \delta_{sk}(\omega) h}{2\pi b^3} \approx (sgn(\omega) - i) \frac{R}{b^3} \sqrt{\frac{2\rho}{\varepsilon_0 |\omega|}} \end{split}$$

Impedances

Y.H. Chin, Impedance and Wake Fields

Resonance Impedance

• Wake fields can be trapped in discontinuities (e.g. cavities) in the vacuum chamber

Resistive Wall Impedance

• Due to resistive beam pipe the image current is slowed down \rightarrow wake field \rightarrow impedance

$$\begin{split} Z_{||,rw}(\omega) &= \frac{\omega}{2}(1-i)\frac{Z_0\delta_{sk}(\omega)h}{2\pi bc} \approx (1-i)\frac{\omega R}{2bc}\sqrt{\frac{2\rho}{\varepsilon_0|\omega|}} \\ Z_{\perp,rw}(\omega) &= (sgn(\omega)-i)\frac{Z_0\delta_{sk}(\omega)h}{2\pi b^3} \approx (sgn(\omega)-i)\frac{R}{b^3}\sqrt{\frac{2\rho}{\varepsilon_0|\omega|}} \end{split}$$

Inputs for Broad Band Resonance Impedance

• Have assumed same values for the DR as for SPS to know how much better the DR need to be

Parameters	DR ¹⁸ Ne	DR ⁶ He
Q	1.00	1.00
ω _{r,} [GHz]	6.28	6.28
Ζ/n [Ω]	10.00	10.00
R _{s,} [ΜΩ]	0.221	0.221
QL	1.00	1.00
ω _{r.1} [GHz]	6.28	6.28
$R_{s,L}[M\Omega/m]$	20.00	20.00

Inputs for Chromaticity

• Used

$$\xi_x = 0.05 \text{ and } \xi_y = 0.1 \text{ for DR where } \eta > 0$$

TMCI Limit

- With high bunch intensity the wake fields couple the modes together so the different head-tail modes can **not** be treated separately as is done in Sacherer's Formula
- Instead a Transverse Mode Coupling Instability (TMCI) appears above a threshold for number of particles per bunch: Coherent

Circular Accelerators

(for dimension analysis: Js/C)

Instabilities in

ingle-Beam

Métral,

CERN

$$N_{b_{x,y}}^{th} = \frac{32}{3\sqrt{2}\pi} \frac{Q_{x,y} |\eta| \varepsilon_l^{2\sigma} \omega_r}{Z^2 \beta^2 c} \left(\Re \left[Z_{\perp_{x,y}}^{BB} \right]_{max} \right)^{-1} \left(1 + \frac{\omega_{\xi_{x,y}}}{\omega_r} \right)$$

$$\varepsilon_{l}^{2\sigma} = \frac{\pi}{2} \beta^{2} E_{tot} \tau_{b} \delta_{max} \text{ in eVs (for dime} \\ \mathbf{DR}^{18} \mathbf{Ne} \mathbf{DR}^{6} \mathbf{He} \\ \varepsilon_{1} (2\sigma) [eVs] \mathbf{43.200} \mathbf{14.464} \\ \rho [\mathbf{Z}_{\perp y}^{\text{BB}}]_{max} [\underline{M\Omega}] \mathbf{21.327} \mathbf{21.327} \\ \mathbf{N}_{B} / \mathbf{N}_{b_{x}}^{\text{th}} \mathbf{22.859} \mathbf{4.635} \\ \mathbf{N}_{B} / \mathbf{N}_{b_{y}}^{\text{th}} \mathbf{41.646} \mathbf{8.445} \end{bmatrix}$$

- $R_{\perp}^{DR} = R_{\perp}^{SPS}/42$ Worst for ¹⁸Ne in DR: N_B needs to be reduced by a factor 42 OR
- Tried to improve N^{th}/N_B by tuning chromaticity, but didn't help (Here $|\xi_x| = 0.05 \& |\xi_y| = 0.1$)

HEADTAIL

By Giovanni Rumolo

E. Benedetto, CERN Beam stability in the SPL

- HEADTAIL is a multiparticle tracking code
- The bunch is sliced longitudinally
- Proton Driver accumulator for a Neutrino Factory at CERN The impedance is assumed to be localized at a few positions around the ring
- At each impedance location, each slice leaves a wake-field behind and gets a kick by the field generated by the preceding slices
- The bunch is then transferred to the next impedance location via a transport matrix

For the Beta Beam Studies the possibility of bunches with ¹⁸Ne and ⁶He was added to the code

DR ¹⁸Ne - Transversal Broad Band

DR¹⁸Ne

Transv. Broad Band Res.

 $N_B^{org} = 4.27e12$

 $\mathbf{R}_{\perp}^{\text{org}} = \mathbf{20} \ \mathbf{M} \Omega / \mathbf{m}$

 $\xi_x^{org} = 0.05, \xi_y^{org} = 0.1$

 $(\eta > 0 \text{ for DR})$

- A Least Square Fit to the exponential gives $\langle y_c \rangle_0$ and the Growth Rate, I/au $\langle y_c \rangle = \langle y_c \rangle_0 e^{t/ au}$
- Growth Rate as a function of ion bunch intensity in the Decay Ring:

 HeadTail indicates that for the current anticipated bunch intensity a 427 times smaller shunt impedance than SPS is needed for the DR

DR ⁶He - Transversal Broad Band

DR ⁶He

 $N_B^{org} = 7.24e12$

 $\mathbf{R}_{\perp}^{\text{org}} = 20 \text{ M}\Omega/\text{m}$

 $\xi_x^{org} = 0.05, \xi_y^{org} = 0.1$

 $(\eta > 0 \text{ for } DR)$

- Transv. Broad Band Res. A Least Square Fit to the exponential $\langle y_c \rangle = \langle y_c \rangle_0 \, e^{t/\tau}$ gives $\langle y_c \rangle_0$ and the Growth Rate, I/ τ
- Growth Rate as a function of ion bunch intensity in the Decay Ring:

HeadTail indicates that for the current anticipated bunch intensity a 73 times smaller shunt impedance than SPS is needed for the DR

Growth Rate [1/s]

Longitudinal

- The longitudinal parameters are not clear and/or incorrect in our "FP6 database"
- Sorting things out together with Antoine Chancé
- We have succeeded quit well for the DR
- Still working on SPS; Antoine has recently done an RF simulation (with the ESME 2D program) to achieve the longitudinal parameters from SPS

- In the DR the reference values are the maximum momentum spread, δ_m , (due to a collimator) and the voltage, V, so we want to solve for bunch length, L_b , and emittance, ε_l
- In the phase-space with coordinates (Φ , δ) the synchrotron Hamiltonian is

In the phase-space with coordinates (
$$\Phi, \delta$$
) the synchrotron Hamiltonian is
$$A_{ccelerator Phys}$$

$$H = \frac{1}{2}h\omega_{rev}\eta\delta^2 + \frac{\omega_{rev}ZeV}{2\pi\beta^2 E_{tot}}\left[\cos\phi - \cos\phi_s + (\phi - \phi_s)\sin\phi_s\right]$$

 \odot

A. Chancé

- The DR is a Storage Ring so $\Phi_s = 0$
- If θ_b is the maximum phase advance for a particle then that particle will pass two points: $(0, \delta_m)$ and (θ_b, δ) , and since Hamiltonian is a constant of motion $H(\Phi=0, \delta=\delta_m) = H(\Phi=\theta_b, \delta=0)$

$$-\frac{1}{2}h\omega_{rev}\eta\delta_m^2 = \frac{\omega_{rev}ZeV}{2\pi\beta^2 E_{tot}}\left[\cos\theta_b - 1\right] \qquad \Longrightarrow \qquad \theta_b = \arccos\left[1 - \frac{\pi h\eta E_{tot}\beta^2}{ZeV}\delta_m^2\right]$$

Since $L_b = (2\theta_b / 2\pi) (2\pi\rho / h) = 2\rho\theta_b/h$

$$L_{b} = \frac{2\rho}{h} \arccos \left[1 - \frac{\pi h \eta E_{tot} \beta^{2}}{ZeV} \delta_{m}^{2} \right]$$

• The phase space trajectory of the separatrix, that separates the phase space into inside and outside the bunch, we get by using the point ($\Phi=0, \delta=\delta_m$) and the fact that the hamiltonian is a constant of motion, so H(Φ, δ) = H($\Phi=\theta_b, \delta=0$)

$$\frac{1}{2}h\omega_{rev}\eta\delta^2 + \frac{\omega_{rev}ZeV}{2\pi\beta^2 E_{tot}}\left[\cos\phi - 1\right] = \frac{1}{2}h\omega_{rev}\eta\delta_m^2 \qquad \qquad \delta(\phi) = \sqrt{\delta_m^2 - \frac{\omega_{rev}ZeV}{2\pi\beta^2 E_{tot}}\left[\cos\phi - 1\right]}$$

• The phase-space area of this bunch we get by

$$A = \int_0^{\theta_b} \delta(\phi) d\phi = \ldots = \delta_m G\left(\frac{\theta_b}{2}\right) \quad \text{where} \quad G(\phi) = \frac{8}{\sin\phi} \left[E\left(\sin\phi\right) - \cos^2\phi K\left(\sin\phi\right)\right]$$

A. Chancé

• To get the area in (Δt , ΔE) phase space, ϵ_l , from the area in (Φ , δ) phase space, A, we convert: $\epsilon_l = \rho/(\beta hc) \cdot \beta^2 E_{tot} A = \beta \rho E_{tot}/(hc) A$

$$\varepsilon_{l} = \frac{\beta \rho E_{tot}}{hc} \delta_{m} G\left(\frac{\theta_{b}}{2}\right)$$

• For small amplitude oscillations the phase space ellipse (in the phase space (Φ , δ)) of a particle is defined by it's maximum values (θ_{b} , δ_{m}) that follows the relation

$$\frac{\delta_m}{\theta_b} = \frac{Q_s}{h|\eta|}$$

• Using $\theta_b = hL_b/(2\rho)$ we get the test relation that should be fulfilled for a matched bunch

$$\frac{\rho |\eta| \delta_m}{Q_s L_b/2} = 1$$

Microwave Instability

- Longitudinal Broad Band Impedance, $Z_{\parallel bb}(\omega)$, can cause <u>internal bunch oscillations</u> which can cause <u>bunch lengthening</u> and <u>increase in energy spread</u>
- The "Keil-Schnell Criterion" gives an approximate upper allowed limit on number bunch particles

$$N_b^{th} = \frac{2\pi\beta^2 |\eta| E_{tot} F}{Z^2 e^2 \left|\frac{Z_{||}}{n}\right|} \left(\frac{\delta_{max}}{2}\right)^2 \frac{\tau_b}{4}$$

Accelerator Dhysics

	DR ¹⁸ Ne	DR ⁶ He
σ_{δ}	1.250e-03	1.250e-03
τ_{b} [ns]	6.572	6.572
<mark>Ζ </mark> [Ω]	10.000	10.000
N th b	2.146e+11	1.794e+12
N_B/N_b^{th}	19.881	4.038

• For ¹⁸Ne in DR: N_B needs to be reduced by a factor 20 OR $R_{\parallel}^{DR} = R_{\parallel}^{SPS}/20$

DR ¹⁸Ne - Longitudinal Broad Band

• A Least Square Fit to the exponential gives σ_0 and the Growth Rate, I/ τ

$$\sigma_z = \sigma_0 e^{t/\tau}$$

DR¹⁸Ne

Long. Broad Band Res.

 $N_B^{org} = 4.27e12$

 $\mathbf{R}_{||}^{org} = \mathbf{0.2} \mathbf{M} \Omega$

 $\xi_{x}^{org} = 0.05, \xi_{y}^{org} = 0.1$

 $(\eta > 0 \text{ for } DR)$

• Growth Rate as a function of ion bunch intensity in the Decay Ring:

 HeadTail indicates that for the current anticipated bunch intensity a 60 times smaller longitudinal shunt impedance than SPS is needed for the DR

DR ⁶He - Longitudinal Broad Band

• A Least Square Fit to the exponential gives σ_0 and the Growth Rate, I/ au

$$\sigma_z = \sigma_0 e^{t/\tau}$$

- $\frac{DR \ ^6He}{Long. Broad Band Res.}$ $N_B^{org} = 7.24e12$ $R_{\parallel}^{org} = 0.2 \ M\Omega$ $\xi_x^{org} = 0.05, \ \xi_y^{org} = 0.1$ $(\eta > 0 \text{ for DR})$
- Growth Rate as a function of ion bunch intensity in the Decay Ring:

- HeadTail indicates that for the current anticipated bunch intensity a 9 times smaller longitudinal shunt impedance than SPS is needed for the DR
- Will do head-tail mode coupling and decoupling analysis to explain this behavior

Growth Rate [1/s]

SPS RF Program is being developed with the use of ESME (A. Chancé)

Conclusions

- According to HEADTAIL simulations the DR have to have
 - 430 times better transversal shunt impedance than SPS (¹⁸Ne) and
 - 60 times better longitudinal shunt impedance than SPS (¹⁸Ne)

To Do

- Finish the SPS RF program with ESME simulations
- Study the instabilities at some crucial parts in the SPS RF cycle
- Include other instabilities like those due to Resistive Wall Impedance
- Try to improve Beta Beam's result by tuning the chromaticity
- If result does not improve allot:
 - Redesign the Beta Beam N_B , γ_{tr} , ...
 - Study impact on physics reach

Backup Slides

Input Values (I)

Parameters	SPS Inj. ¹⁸ Ne	SPS Inj. ⁶ He	SPS3 ¹⁸ Ne	SPS3 ⁶ He	SPS4 ¹⁸ Ne	SPS4 ⁶ He
z	10	2	10	2	10	2
Α	18	6	18	6	18	6
h	924	924	924	924	924	924
C [m]	6911.6	6911.6	6911.6	6911.6	6911.6	6911.6
γ _{tr}	24.0	24.0	24.0	24.0	24.0	24.0
V _{RF} [MV]	5.646e-03	1.166e-01	1.000e+00	1.000e+00	1.000e+00	1.000e+00
dB/dt [T/s]	0.00	0.00	0.10	0.10	0.02	0.02
γ	15.5	9.3	13.0	13.0	21.5	21.5
δ _{max}	2.37e-04	5.37e-04	1.67e-03	1.67e-03	1.67e-03	1.67e-03
E _{rest} [MeV]	16767.10	5605.54	16767.10	5605.54	16767.10	5605.54
м	20	20	20	20	20	20
L _ь [m]	5.984	5.984	1.197	1.197	1.197	1.197
N _b	2.48e+11	7.15e+11	2.45e+11	6.75e+11	2.45e+11	6.75e+11
N _m	1	1	1	1	1	1
t _{1/2} [s]	1.67	0.81	1.67	0.81	1.67	0.81
T _c [s]	3.60	6.00	3.60	6.00	3.60	6.00
Q _x	26.13	26.13	26.13	26.13	26.13	26.13
Q _y	26.18	26.18	26.18	26.18	26.18	26.18
(β) _x [m]	54.55	54.55	54.55	54.55	54.55	54.55
(β) _y [m]	54.59	54.59	54.59	54.59	54.59	54.59
⟨ D ⟩ _x [m]	1.83	1.83	1.83	1.83	1.83	1.83
ξx	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05
ξγ	-0.10	-0.10	-0.10	-0.10	-0.10	-0.10
ε _{Ν,} (1σ) [πm·rad]	1.23e-05	1.23e-05	1.23e-05	1.23e-05	1.23e-05	1.23e-05
ε _{N,} (1σ) [πm·rad]	6.60e-06	6.60e-06	6.60e-06	6.60e-06	6.60e-06	6.60e-06
ε _ι (full) [eVs]	1.76	0.80	0.90	0.90	0.90	0.90
b _x [cm]	28.4	28.4	28.4	28.4	28.4	28.4
b _y [cm]	6.9	6.9	6.9	6.9	6.9	6.9
ρ [Ωm]	1.0e-07	1.0e-07	1.0e-07	1.0e-07	1.0e-07	1.0e-07

Input Values (2)

Parameters	SPS5 ¹⁸ Ne	SPS5 ⁶ He	SPS6 ¹⁸ Ne	SPS6 ⁶ He
z	10	2	10	2
Α	18	6	18	6
h	4620	4620	4620	4620
C [m]	6911.6	6911.6	6911.6	6911.6
γ _{tr}	24.0	24.0	24.0	24.0
V _{RF} [MV]	7.900e+00	7.900e+00	7.900e+00	7.900e+00
dB/dt [T/s]	0.02	0.02	0.10	0.10
γ	21.5	21.5	23.5	23.5
δ_{max}	1.67e-03	1.67e-03	1.67e-03	1.67e-03
E _{rest} [MeV]	16767.10	5605.54	16767.10	5605.54
м	20	20	20	20
L _ь [m]	1.197	1.197	1.197	1.197
N _b	2.45e+11	6.75e+11	2.45e+11	6.75e+11
N _m	1	1	1	1
t _{1/2} [s]	1.67	0.81	1.67	0.81
T _c [s]	3.60	6.00	3.60	6.00
Q _x	26.13	26.13	26.13	26.13
Q _y	26.18	26.18	26.18	26.18
(β) _x [m]	54.55	54.55	54.55	54.55
(β) _y [m]	54.59	54.59	54.59	54.59
$\langle D \rangle_x [m]$	1.83	1.83	1.83	1.83
ξx	-0.05	-0.05	-0.05	-0.05
ξy	-0.10	-0.10	-0.10	-0.10
ε _{Ν,} (1σ) [πm·rad]	1.23e-05	1.23e-05	1.23e-05	1.23e-05
ε _{N,} (1σ) [πm·rad]	6.60e-06	6.60e-06	6.60e-06	6.60e-06
ε _ι (full) [eVs]	0.90	0.90	0.90	0.90
b _x [cm]	28.4	28.4	28.4	28.4
b _y [cm]	6.9	6.9	6.9	6.9
ρ [Ωm]	1.0e-07	1.0e-07	1.0e-07	1.0e-07

Input Values (3)

Parameters	SPS Ej. ¹⁸ Ne	SPS Ej. ⁶ He	DR ¹⁸ Ne	DR ⁶ He
z	10	2	10	2
Α	18	6	18	6
h	4620	4620	924	924
C [m]	6911.6	6911.6	6911.6	6911.6
γ _{tr}	24.0	24.0	27.0	27.0
V _{RF} [MV]	7.900e+00	7.900e+00	1.196e+01	2.000e+01
dB/dt [T/s]	0.10	0.10	0.00	0.00
γ	100.0	100.0	100.0	100.0
δ _{max}	4.73e-04	1.07e-03	2.50e-03	2.50e-03
E _{rest} [MeV]	16767.10	5605.54	16767.10	5605.54
м	20	20	20	20
L _ь [m]	1.197	1.197	1.967	1.970
N _b	2.45e+11	6.75e+11	2.45e+11	6.75e+11
N _m	1	1	20	15
t _{1/2} [s]	1.67	0.81	1.67	0.81
T _c [s]	3.60	6.00	3.60	6.00
Q _x	26.13	26.13	22.23	22.23
Q _y	26.18	26.18	12.16	12.16
(β) _x [m]	54.55	54.55	148.25	148.25
(β) _y [m]	54.59	54.59	173.64	173.64
⟨ D ⟩ _x [m]	1.83	1.83	-0.60	-0.60
ξx	1.00	0.05	0.05	0.05
ξ	1.00	0.10	0.10	0.10
ε _{Ν,} (1σ) [πm·rad]	1.23e-05	1.23e-05	1.48e-05	1.48e-05
ε _{N,} (1σ) [πm·rad]	6.60e-06	6.60e-06	7.90e-06	7.90e-06
ε _l (full) [eVs]	2.20	1.00	42.89	14.36
b _x [cm]	28.4	28.4	16.0	16.0
b _y [cm]	6.9	6.9	16.0	16.0
ρ [Ωm]	1.0e-07	1.0e-07	1.0e-07	1.0e-07

Calcu	lated	Val	ues	(1)

NT ((st.)	SPS Inj. ¹⁸ Ne	SPS Inj. ⁶ He	SPS3 ¹⁸ Ne	SPS3 ⁶ He	SPS4 ¹⁸ Ne	SPS4 ⁶ He
$N_{B} = N_{b} \frac{1 - 2^{-N_{m}T_{c}/(\gamma t_{1/2})}}{1 - 2^{-T_{c}/(\gamma t_{1/2})}}$	2.48e+11	7.15e+11	2.45e+11	6.75e+11	2.45e+11	6.75e+11
$r_0 [m] = r_p Z^2 / A$	8.53e-18	1.02e-18	8.53e-18	1.02e-18	8.53e-18	1.02e-18
$\mathbf{E}_{tot} \text{ [GeV]} = \gamma \cdot \mathbf{E}_{rest}$	260.39	52.30	217.97	72.87	360.49	120.52
$\beta = \sqrt{1-1/\gamma^2}$	1.00	0.99	1.00	1.00	1.00	1.00
$\eta = \left\{ 1/\gamma_{\rm tr} \right\}^2 - \left(1/\gamma \right)^2$	-2.41e-03	-9.75e-03	-4.18e-03	-4.18e-03	-4.27e-04	-4.27e-04
T_{rev} [ms] = C/(β c)	23.1026	23.1882	23.1231	23.1231	23.0796	23.0796
$ω_{rev}$ [MHz] = 2 π/T _{rev}	0.27	0.27	0.27	0.27	0.27	0.27
$\sigma_{\delta} = \delta_{max}/2$	1.19e-04	2.69e-04	8.34e-04	8.34e-04	8.34e-04	8.34e-04
$τ_{b}$ [ns] = L _b / (βc)	20.00	20.08	4.00	4.00	4.00	4.00
I_b [A] = ZeN _B / τ_b	19.87	11.41	98.02	54.01	98.20	54.11
$\varepsilon_{l}^{2a}[eVs] = \frac{\pi}{2}\beta^{2}E_{tot}\tau_{b}\delta_{max}$	1.93	0.88	2.27	0.76	3.77	1.26
$ω_s [kHz] = Q_s · ω_{rev}$	0.08	0.69	1.17	0.90	0.36	0.28
$ω_x$ [MHz] = $Q_x \cdot ω_{rev}$	7.11	7.08	7.10	7.10	7.11	7.11
$ω_y$ [MHz] = $Q_y \cdot ω_{rev}$	7.12	7.10	7.12	7.12	7.13	7.13
$ω_c$ [GHz] = β c / b _{min(x,y)}	4.34	4.32	4.33	4.33	4.34	4.34
$\Delta \mathbf{Q}_{\xi_{\mathbf{x}}} = \xi_{\mathbf{x}} \delta_{\max} \mathbf{Q}_{\mathbf{x}}$	-3.10e-04	-7.02e-04	-2.18e-03	-2.18e-03	-2.18e-03	-2.18e-03
$\Delta \mathbf{Q}_{\xi_{y}} = \xi_{y} \delta_{\max} \mathbf{Q}_{y}$	-6.21e-04	-1.41e-03	-4.37e-03	-4.37e-03	-4.37e-03	-4.37e-03

Calculated Values (2)

-N T // vt)	SPS5 ¹⁸ Ne	SPS5 ⁶ He	SPS6 ¹⁸ Ne	SPS6 ⁶ He
$N_{B} = N_{b} \frac{1 - 2^{-N_{m}T_{c}/(\gamma t_{1/2})}}{1 - 2^{-T_{c}/(\gamma t_{1/2})}}$	2.45e+11	6.75e+11	2.45e+11	6.75e+11
$r_0 [m] = r_p Z^2 / A$	8.53e-18	1.02e-18	8.53e-18	1.02e-18
E_{tot} [GeV] = $\gamma \cdot E_{rest}$	360.49	120.52	394.03	131.73
$\beta = \sqrt{1-1/\gamma^2}$	1.00	1.00	1.00	1.00
$\eta = \left\{ 1/\gamma_{\rm tr} \right\}^2 - \left(1/\gamma \right)^2$	-4.27e-04	-4.27e-04	-7.47e-05	-7.47e-05
T_{rev} [ms] = C/(β c)	23.0796	23.0796	23.0755	23.0755
$ω_{rev}$ [MHz] = 2 π/T _{rev}	0.27	0.27	0.27	0.27
$\sigma_{\delta} = \delta_{max}/2$	8.34e-04	8.34e-04	8.34e-04	8.34e-04
$τ_{b}$ [ns] = L _b / (βc)	4.00	4.00	4.00	4.00
I_b [A] = ZeN _B / τ_b	98.20	54.11	98.22	54.12
$\epsilon_{l}^{2\sigma}[eVs] = \frac{\pi}{2}\beta^{2}E_{tot}\tau_{b}\delta_{max}$	3.77	1.26	4.12	1.38
$ω_s [kHz] = Q_s · ω_{rev}$	2.26	1.75	0.90	0.70
$ω_x $ [MHz] = $Q_x \cdot ω_{rev}$	7.11	7.11	7.11	7.11
$ω_y$ [MHz] = $Q_y \cdot ω_{rev}$	7.13	7.13	7.13	7.13
$ω_c$ [GHz] = β c / b _{min(x,y)}	4.34	4.34	4.34	4.34
$\Delta \mathbf{Q}_{\xi_{\mathbf{x}}} = \xi_{\mathbf{x}} \delta_{\max} \mathbf{Q}_{\mathbf{x}}$	-2.18e-03	-2.18e-03	-2.18e-03	-2.18e-03
$\Delta \mathbf{Q}_{\xi_y} = \xi_y \delta_{max} \mathbf{Q}_y$	-4.37e-03	-4.37e-03	-4.37e-03	-4.37e-03

Calculated Values (3)

-N T //vt)	SPS Ej. ¹⁸ Ne	SPS Ej. ⁶ He	DR ¹⁸ Ne	DR ⁶ He
$N_{\rm B} = N_{\rm b} \frac{1 - 2^{-N_{\rm m} T_{\rm c}/(\gamma t_{1/2})}}{1 - 2^{-T_{\rm c}/(\gamma t_{1/2})}}$	2.45e+11	6.75e+11	4.27e+12	7.24e+12
$r_0 [m] = r_p Z^2 / A$	8.53e-18	1.02e-18	8.53e-18	1.02e-18
$\mathbf{E}_{tot} \text{ [GeV]} = \gamma \cdot \mathbf{E}_{rest}$	1676.71	560.55	1676.71	560.55
$\beta = \sqrt{1 - 1/\gamma^2}$	1.00	1.00	1.00	1.00
$\eta = \left\{ 1/\gamma_{\rm tr} \right\}^2 - \left(1/\gamma \right)^2$	1.64e-03	1.64e-03	1.27e-03	1.27e-03
T_{rev} [ms] = C/(β c)	23.0558	23.0558	23.0558	23.0558
$ω_{rev}$ [MHz] = 2 π/T _{rev}	0.27	0.27	0.27	0.27
$\sigma_{\delta} = \delta_{max}/2$	2.37e-04	5.34e-04	1.25e-03	1.25e-03
$τ_{b}$ [ns] = L _b / (βc)	3.99	3.99	6.56	6.57
I_b [A] = ZeN _B / τ_b	98.31	54.17	1041.99	353.19
$\varepsilon_{l}^{2a}[eVs] = \frac{\pi}{2}\beta^{2}E_{tot}\tau_{b}\delta_{max}$	4.98	3.75	43.20	14.46
$ω_s [kHz] = Q_s · ω_{rev}$	2.05	1.58	1.00	1.00
$ω_x$ [MHz] = $Q_x \cdot ω_{rev}$	7.12	7.12	6.06	6.06
$ω_y$ [MHz] = $Q_y \cdot ω_{rev}$	7.14	7.14	3.31	3.31
$ω_c$ [GHz] = β c / b _{min(x,y)}	4.34	4.34	1.87	1.87
$\Delta \mathbf{Q}_{\xi_x} = \xi_x \delta_{max} \mathbf{Q}_x$	1.24e-02	1.40e-03	2.78e-03	2.78e-03
$\Delta \mathbf{Q}_{\xi_y} = \xi_y \delta_{max} \mathbf{Q}_y$	1.24e-02	2.80e-03	3.04e-03	3.04e-03
DANKA CAR 3-35				

RF Values - No Acc.

	SPS Inj. ¹⁸ Ne	SPS Inj. ⁶ He	DR ¹⁸ Ne	DR ⁶ He
$(\delta_{\max}) = \frac{h\epsilon_i c}{\rho E_{tot} G\{\theta_b/2\}}$	2.373e-04	5.370e-04	•3	
δ _{max}	2.373e-04	5.370e-04	2.500e-03	2.500e-03
$eV[MeV] = \frac{\pi h \eta E_{tot} \{\beta \delta_{max}\}^2}{Z(1 - \cos \theta_b)}$	5.646e-03	1.166e-01	-	
eV [MeV]	5.646e-03	1.166e-01	1.196e+01	2.000e+01
$L_{b}^{\dagger}[m] = \frac{2\rho}{h} \arccos\left(1 - \frac{\pi h \eta E_{tot}(\beta \delta_{max})^{2}}{ZeV}\right)$	•	•	1.970	1.970
L _ь [m]	5.984	5.984	1.967	1.970
$\varepsilon_{i}^{*} [eVs] = \frac{\beta \rho E_{tot} \delta_{max}}{hc} G\{\theta_{b}/2\}$		•	42.883	14.358
ε _ι [eVs]	1.760	0.800	42.890	14.360
$\mathbf{Q}_{s} = \sqrt{\frac{\mathbf{hZeV} \eta\mathbf{cos}\phi_{s} }{2\pi\beta^{2}E_{tot}}}$	2.778e-04	2.543e-03	3.653e-03	3.653e-03
$\theta_{b} = \frac{hL_{b}}{2\rho} \text{ [rad]}$	2.513	2.513	0.826	0.827
<u>թիղիճ_{max}</u> Q _s L _b /2	0.757	0.757	0.973	0.972

RF Values - Acc	. (1)	
		_

	SPS3 ¹⁸ Ne SPS3 ⁶ He		SPS4 ¹⁸ Ne	SPS4 ⁶ He
(δ _{max}) = ?	??	??	??	??
δ _{max}	1.668e-03	1.668e-03	1.668e-03	1.668e-03
eV [MeV] = ?	??	??	??	??
ev [mev]				
eV [MeV]	1.000e+00	1.000e+00	1.000e+00	1.000e+00
L _b [m] = ?	??	??	??	??
L _b [m]	1.197	1.197	1.197	1.197
				22
ε _i [eVs] = ?	??	??	??	??
ε _ι [eVs]	0.900	0.900	0.900	0.900
$\phi_{s} [^{\circ}] = asin\left(\frac{2\pi\rho^{2}B'(t)}{V_{ct}}\right)$	49.49	49.49	8.75	8.75
∇_{rf}	-315	-313	0.70	0.70
$\mathbf{Q}_{s} = \sqrt{\frac{hZeV[\eta \cos\phi_{s}]}{2\pi\beta^{2}E_{tot}}}$	4.293e-03	3.321e-03	1.314e-03	1.016e-03
$\theta_{b} = \frac{hL_{b}}{2\rho} [rad]$	0.503	0.503	0.503	0.503
2ρ				
$\frac{\rho \eta \delta_{max}^{*}}{Q_{s} L_{b}/2}$	2.986	3.860	0.997	1.289

RF Values - Acc. (2)

						,
		SPS5 ⁶ He	SPS6 ¹⁸ Ne	SPS6 ⁶ He	SPS Ej. ¹⁸ Ne	SPS Ej. ⁶ He
(δ _{max}) = ?	??	??	??	??	??	??
δ _{max}	1.668e-03	1.668e-03	1.668e-03	1.668e-03	4.734e-04	1.068e-03
eV [MeV] = ?	??	??	??	??	??	??
eV [MeV]	7.900e+00	7.900e+00	7.900e+00	7.900e+00	7.900e+00	7.900e+00
L _b [m] = ?	??	??	??	??	??	??
L _b [m]	1.197	1.197	1.197	1.197	1.197	1.197
ε <mark>:</mark> [eVs] = ?	??	??	??	??	??	??
ε <mark>, [eVs]</mark>	0.900	0.900	0.900	0.900	2.200	1.000
$\phi_{s} [^{\circ}] = asin\left(\frac{2\pi\rho^{2}B'(t)}{V_{rt}}\right)$	1.10	1.10	5.52	5.52	5.52	5.52
$\mathbf{Q}_{s} = \sqrt{\frac{\mathbf{hZeV}[\eta \mathbf{cos}\phi_{s}]}{2\pi\beta^{2}E_{tot}}}$	8.305e-03	6.424e-03	3.313e-03	2.562e-03	7.512e-03	5.810e-03
$\theta_{b} = \frac{hL_{b}}{2\rho} [rad]$	2.514	2.514	2.514	2.514	2.514	2.514
p η δ _{max} Q _s L _b /2	0.158	0.204	0.069	0.089	0.190	0.553

Beta Beam Instability Studies

 Collective Effect studies with the "Head Tail" simulation program will be made to study instabilities for all beams in the Beta Beam complex

• The extra impedance due to beam loading at the special RF cavity in the Decay Ring will have to be taken into account

C. Hansen

 The SPS' RF programs for the Beta Beams (left) are currently being developed in detail (A. Chancé) for the Instability Studies

• Areas in the SPS cycle where to investigate instabilities:

Transversal Instability Limits

HeadTail and Formulas

ξ = ξ ^{org}	HeadTail	Transverse Mode Coupling (TMCI Eq.)		
DR ¹⁸ Ne; BB⊥	$R_{\perp} = R_{\perp}^{sps}/427$	$R_{\perp} = R_{\perp}^{sps}/42$		
DR ⁶ He; BB⊥	$R_{\perp} = R_{\perp}^{sps}/73$	$R_{\perp} = R_{\perp}^{sps}/9$		
SPS Ej. ¹⁸ Ne; BB⊥	$N_B = N_B^{org}/??$	$N_B = N_B^{org} / 10$		
SPS Ej. ⁶ He; BB⊥		$N_B = N_B^{org}/4$		
SPS Inj. ¹⁸ Ne; BB⊥	$N_B = N_B^{org}/??$	$N_B = N_B^{org} / 4$		
SPS Inj. ⁶ He; BB⊥		$N_B = N_B^{org}$		

Longitudinal Instability Limits

HeadTail and Formulas

ξ = ξ ^{org}	HeadTail	Micro Wave Instabilities (Keil Schnell)
DR ¹⁸ Ne; BB	R = R ^{sps} /60	$R_{ } = R_{ }^{sps}/20$
DR ⁶ He; BB	R = R ^{sps} /9	$R_{ } = R_{ }^{sps}/4$
SPS Ej. ¹⁸ Ne; BB		$N_B = N_B^{org}/44$
SPS Ej. ⁶ He; BB		$N_B = N_B^{org}/8$
SPS Inj. ¹⁸ Ne; BB		$N_B = N_B^{org}/36$
SPS Inj. ⁶ He; BB		$N_B = N_B^{org}$

DR ¹⁸Ne - Longitudinal Broad Band

DR ⁶He - Longitudinal Broad Band

SPS ¹⁸Ne Injection - Long. Broad Band $N_B = N_B^{org}$ and $\xi = \xi^{org}$

Head Tail Modes (n)

- The different ways particles in the front (head) of the bunch are positioned compared to particles in the back (tail) of the bunch are grouped in different "modes"
- The "head-tail mode number", *n*, defines how the head and tail couples in that mode
- The signal of a bunch in a position monitor shows *n* nodes for mode *n*:

These head-tail modes in time domain can be Fourier transformed and squared to get the "head-tail power spectrum", $h_n(\omega)$:

$$p_{n}(t) = \begin{cases} \cos \left[(n+1)\pi \frac{t}{\tau_{b}} \right] &, n = 0, 2, 4, \dots \\ \sin \left[(n+1)\pi \frac{t}{\tau_{b}} \right] &, n = 1, 3, 5, \dots \end{cases} \qquad \left| \mathcal{F} \left(p_{n}(t) \right) \right|^{2} = h_{n}(\omega)$$

Direct Space Charge

- A particle in a bunch feels the collective Coulomb forces due to fields generated by the charge of the other particles in the bunch
- For relativistic beams the repulsive E forces are cancelled by the contracting B forces \rightarrow tune shift due to space charge $\propto \gamma^{-2}$

$$\Delta Q_{dsc_{x,y}} = -\frac{\lambda r_0 R}{2\beta \gamma^2 \epsilon_{N_{x,y}}}$$

- Assuming Gaussian bunches the peak line charge density near the bunch center is $\lambda = N / \left(\sqrt{2\pi}\sigma_z\right)$ and the full bunch length $L_b = 4\sigma_z$
- For ions $r_0 = r_p Z^2 / A$ so we get the tune shift

$$\Delta Q_{dsc_{x,y}} = -\frac{2N_B r_p Z^2 R}{\sqrt{2\pi} A L_b \beta \gamma^2 \epsilon_{N_{x,y}}}$$

Physics of Collective Beam

• If absolute value is more than 0.2 it could cause the tune to cross over the resonance lines

Direct Space Charge

$$\Delta Q_{dsc_{x,y}} = -\frac{1}{B} \frac{N_B r_0 R}{\pi \gamma^3 \beta^2 Q_{x,y}} \frac{\varepsilon_{x,y}^{dsc}}{2\sigma_y^2}$$

where

 $\sigma_y + \sigma_x$

K. Y. Ng

Physics of Intensity

Dependent Instabilities

USPAS 2002

$$\varepsilon_x^{dsc} = \frac{\sigma_y^2}{\sigma_x(\sigma_y + \sigma_x)} \qquad \sigma_x = \sqrt{\frac{\langle \beta_x \rangle \varepsilon_{N_x}^{1\sigma}}{\gamma \beta} + \langle D_x \rangle^2 \left(\frac{dp}{p}\right)_{max}^2}$$
$$\varepsilon_y^{dsc} = \frac{\sigma_y}{\sigma_y + \sigma_x} \qquad \sigma_y = \sqrt{\frac{\langle \beta_y \rangle \varepsilon_{N_y}^{1\sigma}}{\gamma \beta}}$$

DSC	DR ¹⁸ Ne	DR ⁶ He	SPS Ej. ¹⁸ Ne	SPS Ej. ⁶ He	SPS Inj. ¹⁸ Ne	SPS Inj. ⁶ He
$\Delta \mathbf{Q}_{dsc_{\mathbf{x}}}$	-0.0402	-0.0082	-0.0109	-0.0036	-0.0916	-0.0881
$\Delta \mathbf{Q}_{dsc_{y}}$	-0.0930	-0.0189	-0.0149	-0.0049	-0.1252	-0.1204

(added the factor I/B myself; B is the bunching factor)

Direct Space Charge

For elliptical beam according to Ng

$$\Delta Q_{dsc_{x,y}} = -\frac{\partial V_B}{\sqrt{2\pi}L_b\beta\gamma^2\sqrt{\epsilon_{N_{x,y}}}} \left[\sqrt{\epsilon_{N_{x,y}}} + \sqrt{\epsilon_{N_{y,x}}\langle\beta_{y,x}\rangle/\langle\beta_{x,y}\rangle}\right]$$

 $8N_Br_0R$

DSC	DR ¹⁸ Ne	DR ⁶ He	SPS Ej. ¹⁸ Ne	SPS Ej. ⁶ He	SPS Inj. ¹⁸ Ne	SPS Inj. ⁶ He
$\Delta \mathbf{Q}_{dsc_{x}}$	-0.2410	-0.0491	-0.0287	-0.0095	-0.2418	-0.2327
$\Delta \mathbf{Q}_{dsc_{y}}$	-0.3570	-0.0727	-0.0393	-0.0130	-0.3303	-0.3177

- But if we assume round beam this becomes a factor 2 bigger than Chao's equation (prev. slide)
- ΔQ_{dsc}

$$e_{x,y} = -\frac{4N_B r_0 R}{\sqrt{2\pi} L_b \beta \gamma^2 \epsilon_{N_{x,y}}}$$

So let's divide Ng's equation by 2

$$\Delta Q_{dsc_{x,y}} = -\frac{4N_B r_0 R}{\sqrt{2\pi} L_b \beta \gamma^2 \sqrt{\epsilon_{N_{x,y}}} \left[\sqrt{\epsilon_{N_{x,y}}} + \sqrt{\epsilon_{N_{y,x}} \langle \beta_{y,x} \rangle / \langle \beta_{x,y} \rangle}\right]}$$

DSC	DR ¹⁸ Ne	DR ⁶ He	SPS Ej. ¹⁸ Ne	SPS Ej. ⁶ He	SPS Inj. ¹⁸ Ne	SPS Inj. ⁶ He
$\Delta \mathbf{Q}_{dsc_{x}}$	-0.1205	-0.0245	-0.0144	-0.0048	-0.1209	-0.1163
$\Delta \mathbf{Q}_{dsc_{v}}$	-0.1785	-0.0364	-0.0196	-0.0065	-0.1651	-0.1589

Image Coefficients for Elliptical Vacuum Chambers

• Assume the beam is <u>centered</u>, then

$$\varepsilon_y^{incoh} = -\varepsilon_x^{incoh} = \frac{h^2}{12\epsilon^2} \left[(1+k'^2) \left(\frac{2K(k)}{\pi}\right)^2 - 2 \right]$$

$$\epsilon = \sqrt{w^2 - h^2}$$

$$\varepsilon_y^{coh} = \frac{h^2}{4\epsilon^2} \left[\left(\frac{2K(k)}{\pi} \right)^2 - 1 \right]$$

 θ

$$\varepsilon_x^{coh} = \frac{h^2}{4\epsilon^2} \left[1 - \left(\frac{2K(k)k'}{\pi}\right)^2 \right]$$

where

$$k' = \left(\frac{1 + 2\sum_{s=1}^{\infty} (-1)^s q^{s^2}}{1 + 2\sum_{s=1}^{\infty} q^{s^2}}\right)^2$$

$$q = \frac{w - h}{w + h}$$
$$k = \sqrt{1 - k^{2}}$$
$$K(k) = \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{1 - k^{2} \sin^{2}}}$$

When w = h (e.g. for the DR) then $\varepsilon_y^{incoh} = \varepsilon_x^{incoh} = 0$

$$\varepsilon_y^{coh} = \varepsilon_x^{coh} = 1/2$$

Resistive Wall Impedance

- Since the conductivity of the beam pipe is not perfect the image current is slowed down, radiates a wake field which gives an impedance
- To get the Resistive Wall Impedance one takes into account that the EM fields penetrate the pipe material to a thickness called "Skin Depth", that equals

$$\delta_{sk}(\omega) = \sqrt{\frac{2\rho}{|\omega|\mu}}$$

 $h = C = 2\pi R$ $\mu \approx \mu_0$

 $Magnetic Permeability = \mu = \mu_{ss} \mu_{0}$ = 1.05 · 4TT · 10⁻⁷ Vs/Am Resistivity = $\rho = 1 \cdot 10^{-7} \Omega m$ where ρ is the materials "bulk resistance" and then gets the "resistant" (real) and "reactive" (imaginary) parts for the longitudinal and transverse impedances of a cylindrical model with length h(circumference of the ring is used for h), radius b and thickness δ_{sk}

$$\begin{split} Z_{||,rw}(\omega) &= \frac{\omega}{2} (1-i) \frac{Z_0 \delta_{sk}(\omega) h}{2\pi bc} \approx (1-i) \frac{\omega R}{2bc} \sqrt{\frac{2\rho}{\varepsilon_0 |\omega|}} \\ Z_{\perp,rw}(\omega) &= (sgn(\omega) - i) \frac{Z_0 \delta_{sk}(\omega) h}{2\pi b^3} \approx (sgn(\omega) - i) \frac{R}{b^3} \sqrt{\frac{2\rho}{\varepsilon_0 |\omega|}} \end{split}$$

... To be "plugged in" in Sacherer's formulas ... (see coming slides)

Y.H. Chin,

Impedance and Wake

Stainless Steel:

Resonance Impedances

- Wake Fields trapped in cavities or discontinuities in the vacuum chamber cause Resonance Impedances
- Resonance Impedances consist of a real (resistive) part and a imaginary (reactive) part: $Z = Z_{Re} + i Z_{Im}$
 - → We see an analogy between Resonance Wake Fields and Electronic Circuits
 - → The Impedance of "high order modes" Wakes can be modeled with the RLC circuit

$$\rightarrow \ Z_{||}(\omega) = \frac{R_{||}}{1 + iQ\left(\frac{\omega_r}{\omega} - \frac{\omega}{\omega_r}\right)} \quad , \quad Z_{\perp}(\omega) = \frac{R_{\perp}\frac{\omega_r}{\omega}}{1 + iQ\left(\frac{\omega_r}{\omega} - \frac{\omega}{\omega_r}\right)}$$

 $\omega < \omega_c$

where $Q = R\sqrt{C/L}$ is the "Quality Factor" and $\omega_r = 1/\sqrt{LC}$ is the characteristic frequency for the RLC circuit, or for the pipe it is the "Characteristic Frequency" for the structure causing the Wake Field and $R_{||}$ and R_{\perp} are the "Shunt Impedances" Take the Inverse FT to get the Wake Fields \rightarrow

$$W_{||}(\tau) = \frac{e^{-\omega_r \tau/2Q}}{C} \left[\cos\left(\omega_r \tau \sqrt{1 - 1/(4Q^2)}\right) - \frac{1}{\sqrt{4Q^2}} \sin\left(\omega_r \tau \sqrt{1 - 1/(4Q^2)}\right) \right], \ \tau > 0, \ = 0 \ \tau < 0$$

Narrow & Broad Band

 From the RLC circuit model we see the behavior of the resonant wake fields and the real and imaginary part of the impedance in the case of <u>high quality factor</u>; Narrow Band

High Q → Narrow Band → Long Lasting Wake Field → Multi Bunch Instabilities

and in the case of low quality factor; Broad Band

Low Q → Broad Band → Short Lasting Wake Field → Single Bunch Instabilities