Beta Beam's Collective Effect Study

Christian Hansen EUROv MEETING 2010/06/02

Many thanks to: E. Benedetto, A. Chancé, E. Metral, G. Rumolo \& B. Salvant

Introduction

- Beta Beam's physics reach is optimized for high intensity ions beams with short bunch length
- Collective Effects will limit the final performance of accelerators
- Collective Effects has not yet been studied in detail for the CERN Beta Beam complex
- Plan to study all machines for all ions (FP6: ${ }^{6} \mathrm{He}$ \& ${ }^{18} \mathrm{Ne}, \mathrm{FP7}:{ }^{8} \mathrm{~B}$ \& ${ }^{8} \mathrm{Li}$)
- So far focused on the Decay Ring for ${ }^{6} \mathrm{He}$ and ${ }^{18} \mathrm{Ne}$
- Results shown are based on FP6 design (FP6 database) with some edited values

Outline

- Direct Space Charge \& Laslett's Tune Shift
- Transverse Broad Band Resonance:
- Transverse Mode Coupling Instabilities (TMCI) Limit
- HeadTail Results
- Longitudinal Broad Band Resonance:
- Longitudinal Parameters
- Microwave Instabilities Limits
- HeadTail Results

Laslett's Tune Shifts

- Laslett's Tune Shifts take into account both DSC and Image Fields:
- A particle in a bunch feels the collective Coulomb forces due to fields generated by the charge of other particles in the bunch \rightarrow Direct Space Charge (DSC) \rightarrow tune shift
- Also Image Fields due to the surrounding vacuum pipe cause tune shift
- Grouped into Incoherent and Coherent (DSC only Incoherent) where the coherent tune shifts are due to either Penetrating or Non-Penetrating Fields

- Incoherent Tune Shift

$$
\Delta Q_{x, y}^{i n c o h}=-\frac{N r_{0} R}{\pi \gamma \beta^{2} Q_{x, y}}\left[\left(\frac{1-\beta^{2}}{B}+\beta^{2}\right) \frac{\varepsilon_{x, y}^{i n c o h}}{h^{2}}+\frac{1-\beta^{2}}{2 B} \frac{\varepsilon_{x, y}^{d s c}}{a_{y}^{2}}\right]
$$

$$
\begin{aligned}
& \text { Here added } 1 / 2 B \\
& \text { myself, see backup slides }
\end{aligned}
$$

Coherent Tune Shift using Penetrating Magnetic Fields

$$
\Delta Q_{x, y}^{c o h}=-\frac{N r_{0} R}{\pi \gamma \beta^{2} Q_{x, y}}\left(\frac{1-\beta^{2}}{B}+\beta^{2}\right) \frac{\varepsilon_{x, y}^{c o h}}{h^{2}}
$$

Coherent Tune Shift using Non-Penetrating Magnetic Fields
$\Delta Q_{x, y}^{c o h}=-\frac{N r_{0} R}{\pi \gamma \beta^{2} Q_{x, y}}\left[\frac{1-\beta^{2}}{B} \frac{\varepsilon_{x, y}^{c o h}}{h^{2}}+\beta^{2} \frac{\varepsilon_{x, y}^{i n c o h}}{h^{2}}\right]$

$$
\begin{aligned}
& \text { Here, neg/ected } x_{e} \\
& \text { and } \mathcal{F}\left(\operatorname{see}^{\prime} N_{g .}\right)
\end{aligned}
$$

Laslett's Tune Shifts

- The absolute value of the tune shifts should be <0.2

SC	$\mathrm{DR}{ }^{18} \mathrm{Ne}$	$\mathrm{DR}{ }^{6} \mathrm{He}$
$\Delta \mathbf{Q}_{\mathrm{dsc}_{x}}$	-0.0409	-0.0083
$\Delta \mathbf{Q}_{\mathrm{dsc}_{y}}$	-0.0946	-0.0192
$\Delta \mathbf{Q}_{x}^{\text {macon }}$	-0.0409	-0.0083
$\Delta \mathbf{Q}_{y}^{\text {mach }}$	-0.0946	-0.0192
$\Delta \mathbf{Q}_{x}^{\text {conp }}$	$-1.7470 \mathrm{e}-04$	$-3.5564 \mathrm{e}-05$
$\Delta \mathbf{Q}_{y}^{\text {conp }}$	$-3.1937 \mathrm{e}-04$	$-6.5016 \mathrm{e}-05$
$\Delta \mathbf{Q}_{x}^{\text {con }}$	$-6.2768 \mathrm{e}-05$	$-1.2765 \mathrm{e}-05$
$\Delta \mathbf{Q}_{y}^{\text {com } n p}$	$-1.1475 \mathrm{e}-04$	$-2.3337 \mathrm{e}-05$

- We see that the effect of the image forces are negligible relatively to DSC
- DSC is more crucial for low energy so SPS and PS might have a big DSC problem in Beta Beams ... to be studied in the future ...

Impedances

Resonance Impedance

- Wake fields can be trapped in discontinuities (e.g. cavities) in the vacuum chamber
\rightarrow resonance impedances \rightarrow can be modeled with an RLC circuit:

$$
Z_{\| \mid}(\omega)=\frac{R_{\|}}{1+i Q\left(\frac{\omega_{r}}{\omega}-\frac{\omega}{\omega_{r}}\right)} \quad Z_{\perp}(\omega)=\frac{R_{\perp} \frac{\omega_{r}}{\omega}}{1+i Q\left(\frac{\omega_{r}}{\omega}-\frac{\omega}{\omega_{r}}\right)}
$$

Broad Band (low Q)

Wake

Narrow Band (high Q)

Resistive Wall Impedance

- Due to resistive beam pipe the image current is slowed down \rightarrow wake field \rightarrow impedance

$$
\begin{aligned}
& Z_{\|, r w}(\omega)=\frac{\omega}{2}(1-i) \frac{Z_{0} \delta_{s k}(\omega) h}{2 \pi b c} \approx(1-i) \frac{\omega R}{2 b c} \sqrt{\frac{2 \rho}{\varepsilon_{0}|\omega|}} \\
& Z_{\perp, r w}(\omega)=(\operatorname{sgn}(\omega)-i) \frac{Z_{0} \delta_{s k}(\omega) h}{2 \pi b^{3}} \approx(\operatorname{sgn}(\omega)-i) \frac{R}{b^{3}} \sqrt{\frac{2 \rho}{\varepsilon_{0}|\omega|}}
\end{aligned}
$$

h

Impedances

Resonance Impedance

- Wake fields can be trapped in discontinuities (e.g. cavities) in the vacuum chamber \rightarrow resonance impedances \rightarrow can be modeled with an RLC circuit:

$$
Z_{\| \mid}(\omega)=\frac{R_{\|}}{1+i Q\left(\frac{\omega_{r}}{\omega}-\frac{\omega}{\omega_{r}}\right)} \quad Z_{\perp}(\omega)=\frac{R_{\perp} \frac{\omega_{r}}{\omega}}{1+i Q\left(\frac{\omega_{r}}{\omega}-\frac{\omega}{\omega_{r}}\right)}
$$

$$
\begin{aligned}
& Z_{\|}(\omega)=\frac{R_{\|}}{1+i Q\left(\frac{\omega_{r}}{\omega}-\right.} \\
& \text { Broad Band (low Q) }
\end{aligned}
$$

${ }^{\text {Wake }}{ }_{-10^{-12}}$

Narrow Band (high Q)

Resistive Wall Impedance

- Due to resistive beam pipe the image current is slowed down \rightarrow wake field \rightarrow impedance

$$
\begin{aligned}
& Z_{\|, r w}(\omega)=\frac{\omega}{2}(1-i) \frac{Z_{0} \delta_{s k}(\omega) h}{2 \pi b c} \approx(1-i) \frac{\omega R}{2 b c} \sqrt{\frac{2 \rho}{\varepsilon_{0}|\omega|}} \\
& Z_{\perp, r w}(\omega)=(\operatorname{sgn}(\omega)-i) \frac{Z_{0} \delta_{s k}(\omega) h}{2 \pi b^{3}} \approx(\operatorname{sgn}(\omega)-i) \frac{R}{b^{3}} \sqrt{\frac{2 \rho}{\varepsilon_{0}|\omega|}}
\end{aligned}
$$

h

Inputs for Broad Band Resonance Impedance

- Have assumed same values for the DR as for SPS to know how much better the DR need to be

Parameters	DR ${ }^{18} \mathrm{Ne}$	DR ${ }^{6} \mathrm{He}$	
$\mathbf{Q}_{\\|}$	1.00	1.00	
$\omega_{\text {r, \\|\| }}[\mathrm{GHz}]$	6.28	6.28	
$\left\|Z_{\\| \mid} / \mathrm{n}\right\|[\Omega]$	10.00	10.00	
$\mathbf{R}_{\mathrm{s},\| \|}[\mathrm{M} \Omega]$	0.221	0.221	
Q_{\perp}	1.00	1.00	
$\omega_{\text {r.L }}$ [GHz]	6.28	6.28	
$\mathrm{R}_{\mathrm{s}, \mathrm{L}}[\mathrm{M} \Omega / \mathrm{m}]$	20.00	20.00	

Inputs for Chromaticity

- Used

$$
\xi_{x}=0.05 \text { and } \xi_{y}=0.1 \text { for DR where } \eta>0
$$

$$
\perp
$$

Transverse

TMCI Limit

- With high bunch intensity the wake fields couple the modes together so the different head-tail modes can not be treated separately as is done in Sacherer's Formula
- Instead a Transverse Mode Coupling Instability (TMCI) appears above a threshold for number of particles per bunch:

$$
N_{b_{x, y}}^{t h}=\frac{32}{3 \sqrt{2} \pi} \frac{Q_{x, y}|\eta| \varepsilon_{l}^{2 \sigma} \omega_{r}}{Z^{2} \beta^{2} c}\left(\Re\left[Z_{\perp_{x, y}}^{B B}\right]_{\max }\right)^{-1}\left(1+\frac{\omega_{\xi_{x, y}}}{\omega_{r}}\right)
$$

- Where $\quad \varepsilon_{l}^{2 \sigma}=\frac{\pi}{2} \beta^{2} E_{t o t} \tau_{b} \delta_{\max } \quad$ in $\mathrm{eVs} \quad$ (for dimension analysis: s / C)

	$\mathrm{DR}^{18} \mathrm{Ne}$	$\mathrm{DR}^{6} \mathrm{He}$
$\varepsilon_{1}(2 \sigma)[\mathrm{eVs}]$	43.200	14.464
$\rho\left[\mathrm{Z}_{\perp y}^{\text {sB }}\right]_{\text {max }}\left[\frac{\mathrm{M} \Omega}{\mathrm{m}}\right]$	21.327	21.327
$\mathrm{~N}_{\mathrm{B}} / \mathrm{N}_{\mathrm{b}_{\mathrm{x}}}^{\text {th }}$	$\underline{22.859}$	$\underline{4.635}$
$\mathrm{~N}_{\mathrm{B}} / \mathrm{N}_{\mathrm{b}_{y}}^{\text {th }}$	$\underline{41.646}$	$\underline{8.445}$

- Worst for ${ }^{18} \mathrm{Ne}$ in $\mathrm{DR}: \mathrm{N}_{B}$ needs to be reduced by a factor 42 OR $\quad R_{\perp}{ }^{\mathrm{DR}}=\mathrm{R}_{\perp}{ }^{\mathrm{SPS}} / 42$
- Tried to improve $N^{\text {th }} / N_{B}$ by tuning chromaticity, but didn't help (Here $\left|\xi_{x}\right|=0.05 \&\left|\xi_{y}\right|=0.1$)

HEADTAIL

By Giovanni Rumolo

- HEADTAIL is a multiparticle tracking code
- The bunch is sliced longitudinally
- The impedance is assumed to be localized at a few positions around the ring
- At each impedance location, each slice leaves a wake-field behind and gets a kick by the field generated by the preceding slices
- The bunch is then transferred to the next impedance location via a transport matrix

- For the Beta Beam Studies the possibility of bunches with ${ }^{18} \mathrm{Ne}$ and ${ }^{6} \mathrm{He}$ was added to the code

DR ${ }^{18} \mathrm{Ne}$ - Transversal Broad Band

- A Least Square Fit to the exponential gives $\left\langle y_{c}\right\rangle_{0}$ and the Growth Rate, I/ τ

$$
\left\langle y_{c}\right\rangle=\left\langle y_{c}\right\rangle_{0} e^{t / \tau}
$$

- Growth Rate as a function of ion bunch intensity in the Decay Ring:

DR ${ }^{18} \mathbf{N e}$

Transv. Broad Band Res.
$\mathbf{N}_{\mathrm{B}}{ }^{\text {org }}=4.27 \mathrm{el} 2$
$R_{\perp}{ }^{\text {org }}=20 \mathrm{M} \Omega / \mathrm{m}$
$\xi_{\mathrm{x}}^{\mathrm{org}}=0.05, \xi_{\mathrm{y}}^{\mathrm{org}}=0.1$
($\eta>0$ for DR)

- HeadTail indicates that for the current anticipated bunch intensity a 427 times smaller shunt impedance than SPS is needed for the DR

DR ${ }^{6} \mathrm{He}$ - Transversal Broad Band

- A Least Square Fit to the exponential gives $\left\langle y_{c}\right\rangle_{0}$ and the Growth Rate, I/ τ

$$
\left\langle y_{c}\right\rangle=\left\langle y_{c}\right\rangle_{0} e^{t / \tau}
$$

- Growth Rate as a function of ion bunch intensity in the Decay Ring:

DR ${ }^{6} \mathrm{He}$

Transv. Broad Band Res.
$\mathbf{N}_{\mathrm{B}}{ }^{\text {org }}=\mathbf{7 . 2 4 e l} 2$
$R_{\perp}{ }^{\text {org }}=20 \mathrm{M} \Omega / \mathrm{m}$
$\xi_{\mathrm{x}}{ }^{\mathrm{org}}=0.05, \xi_{\mathrm{y}}^{\mathrm{org}}=0.1$
($\eta>0$ for $D R$)

- HeadTail indicates that for the current anticipated bunch intensity a 73 times smaller shunt impedance than SPS is needed for the DR
|| Longitudinal

Longitudinal Parameters

- The longitudinal parameters are not clear and/or incorrect in our "FP6 database"
- Sorting things out together with Antoine Chancé
- We have succeeded quit well for the DR
- Still working on SPS; Antoine has recently done an RF simulation (with the ESME 2D program) to achieve the longitudinal parameters from SPS

Longitudinal Parameters - DR

- In the DR the reference values are the maximum momentum spread, δ_{m}, (due to a collimator) and the voltage,, , so we want to solve for bunch length, L_{b}, and emittance, ε_{l}
- In the phase-space with coordinates (Φ, δ) the synchrotron Hamiltonian is

$$
H=\frac{1}{2} h \omega_{r e v} \eta \delta^{2}+\frac{\omega_{r e v} Z e V}{2 \pi \beta^{2} E_{t o t}}\left[\cos \phi-\cos \phi_{s}+\left(\phi-\phi_{s}\right) \sin \phi_{s}\right]
$$

- The DR is a Storage Ring so $\Phi_{s}=0$
A. Chance
- If θ_{b} is the maximum phase advance for a particle then that particle will pass two points: $\left(0, \delta_{\mathrm{m}}\right)$ and $\left(\theta_{\mathrm{b}}, \delta\right)$, and since Hamiltonian is a constant of motion $\mathrm{H}\left(\Phi=0, \delta=\delta_{\mathrm{m}}\right)=\mathrm{H}\left(\Phi=\theta_{\mathrm{b}}, \delta=0\right)$

$$
-\frac{1}{2} h \omega_{r e v} \eta \delta_{m}^{2}=\frac{\omega_{r e v} Z e V}{2 \pi \beta^{2} E_{t o t}}\left[\cos \theta_{b}-1\right] \quad \theta_{b}=\arccos \left[1-\frac{\pi h \eta E_{t o t} \beta^{2}}{Z e V} \delta_{m}^{2}\right]
$$

- Since $L_{b}=\left(2 \theta_{b} / 2 \pi\right)(2 \pi \rho / h)=2 \rho \theta_{b} / h$

$$
L_{b}=\frac{2 \rho}{h} \arccos \left[1-\frac{\pi h \eta E_{t o t} \beta^{2}}{Z e V} \delta_{m}^{2}\right]
$$

Longitudinal Parameters - DR

- The phase space trajectory of the separatrix, that separates the phase space into inside and outside the bunch, we get by using the point ($\Phi=0, \delta=\delta_{m}$) and the fact that the hamiltonian is a constant of motion, so $H(\Phi, \delta)=H\left(\Phi=\theta_{b}, \delta=0\right)$

$$
\frac{1}{2} h \omega_{r e v} \eta \delta^{2}+\frac{\omega_{r e v} Z e V}{2 \pi \beta^{2} E_{t o t}}[\cos \phi-1]=\frac{1}{2} h \omega_{r e v} \eta \delta_{m}^{2} \quad \square \quad \delta(\phi)=\sqrt{\delta_{m}^{2}-\frac{\omega_{r e v} Z e V}{2 \pi \beta^{2} E_{t o t}}[\cos \phi-1]}
$$

- The phase-space area of this bunch we get by

$$
A=\int_{0}^{\theta_{b}} \delta(\phi) d \phi=\ldots=\delta_{m} G\left(\frac{\theta_{b}}{2}\right) \quad \text { where } \quad G(\phi)=\frac{8}{\sin \phi}\left[E(\sin \phi)-\cos ^{2} \phi K(\sin \phi)\right]
$$

- To get the area in $(\Delta \mathrm{t}, \Delta \mathrm{E})$ phase space, ε, from the area in (Φ, δ) phase space, A , we convert: $\varepsilon_{l}=\rho /(\beta h c) \cdot \beta^{2} E_{\text {tot }} A=\beta \rho E_{\text {tot }} /(h c) A$

$$
\varepsilon_{l}=\frac{\beta \rho E_{t o t}}{h c} \delta_{m} G\left(\frac{\theta_{b}}{2}\right)
$$

Longitudinal Parameters - DR

- For small amplitude oscillations the phase space ellipse (in the phase space (Ф, δ)) of a particle is defined by it's maximum values ($\theta_{\mathrm{b}}, \delta_{\mathrm{m}}$) that follows the relation

$$
\frac{\delta_{m}}{\theta_{b}}=\frac{Q_{s}}{h|\eta|}
$$

- Using $\theta_{\mathrm{b}}=\mathrm{h} \mathrm{L}_{\mathrm{b}} /(2 \rho)$ we get the test relation that should be fulfilled for a matched bunch

$$
\frac{\rho|\eta| \delta_{m}}{Q_{s} L_{b} / 2}=1
$$

Longitudinal Parameters - DR

	DR ${ }^{18} \mathrm{Ne}$	DR ${ }^{6} \mathrm{He}$
$\delta_{\text {max }}$	2.500e-03	2.500e-03
eV [MeV]	$1.196 \mathrm{e}+01$	$2.000 \mathrm{e}+01$
$\dot{L_{b}}[m]=\frac{2 \rho}{h} \arccos \left(1-\frac{\pi h \eta E_{l 0 t}\left(\beta \delta_{\max }\right)^{2}}{Z e V}\right)$	1.970	1.970
$\varepsilon_{i}^{*}[\mathrm{eVs}]=\frac{\beta \rho \mathrm{E}_{\text {tot }} \delta_{\text {max }}}{\mathrm{hc}} \mathrm{G}\left\{\theta_{\mathrm{b}} / 2\right\}$	42.947	14.358
$Q_{s}=\sqrt{\frac{h Z e V\left\|\eta \cos \phi_{s}\right\|}{2 \pi \beta^{2} E_{\text {tot }}}}$	3.653e-03	$3.653 \mathrm{e}-03$
	0.827	0.827
$\frac{\rho\|\eta\| \delta_{\max }^{*}}{\mathbf{Q}_{\mathrm{s}} \mathrm{~L}_{\mathrm{t}} / 2}$	0.972	0.972

Microwave Instability

- Longitudinal Broad Band Impedance, $Z_{| | b b}(\omega)$, can cause internal bunch oscillations which can cause bunch lengthening and increase in energy spread
- The "Keil-Schnell Criterion" gives an approximate upper allowed limit on number bunch particles

$$
N_{b}^{t h}=\frac{2 \pi \beta^{2}|\eta| E_{t o t} F}{Z^{2} e^{2}\left|\frac{Z_{\| \mid}}{n}\right|}\left(\frac{\delta_{\max }}{2}\right)^{2} \frac{\tau_{b}}{4}
$$

	DR $^{18} \mathrm{Ne}$	$\mathrm{DR}^{6} \mathrm{He}$	
σ_{δ}	$1.250 \mathrm{e}-03$	$1.250 \mathrm{e}-03$	
$\tau_{\mathrm{t}}[\mathrm{ns}]$	6.572	6.572	
$\left\|\frac{Z_{\\| l}}{n}\right\|[\Omega]$	10.000	10.000	
$\mathrm{~N}_{\mathrm{b}}^{\text {th }}$	$2.146 \mathrm{e}+11$	$1.794 \mathrm{e}+12$	
$\mathrm{~N}_{\mathrm{B}} / \mathrm{N}_{\mathrm{b}}^{\text {th }}$	19.881	4.038	

- For ${ }^{18} \mathrm{Ne}$ in $\mathrm{DR}: \mathrm{N}_{B}$ needs to be reduced by a factor $20 \quad \mathrm{OR} \quad \mathrm{R}_{\|}{ }^{\mathrm{DR}}=\mathrm{R}_{\|}{ }^{\mathrm{SPS}} / 20$

DR ${ }^{18} \mathrm{Ne}$ - Longitudinal Broad Band

- A Least Square Fit to the exponential gives σ_{0} and the Growth Rate, I/ τ

$$
\sigma_{z}=\sigma_{0} e^{t / \tau}
$$

- Growth Rate as a function of ion bunch intensity in the Decay Ring:

Long. Broad Band Res.
$\mathbf{N}_{\mathrm{B}}{ }^{\text {org }}=4.27 \mathrm{el} 2$
$\mathbf{R}_{| |}^{\text {org }}=0.2 \mathrm{M} \Omega$
$\xi_{\mathrm{x}}{ }^{\text {org }}=0.05, \xi_{\mathrm{y}}^{\mathrm{org}}=0.1$
($\eta>0$ for DR)

- HeadTail indicates that for the current anticipated bunch intensity a 60 times smaller longitudinal shunt impedance than SPS is needed for the DR

DR ${ }^{6} \mathrm{He}$ - Longitudinal Broad Band

- A Least Square Fit to the exponential gives σ_{0} and the Growth Rate, I/ τ
- Growth Rate as a function of ion bunch intensity in the Decay Ring:

$$
\sigma_{z}=\sigma_{0} e^{t / \tau}
$$

- HeadTail indicates that for the current anticipated bunch intensity a 9 times smaller longitudinal shunt impedance than SPS is needed for the DR
- Will do head-tail mode coupling and decoupling analysis to explain this behavior

Longitudinal Parameters - SPS

- SPS RF Program is being developed with the use of ESME (A. Chancé)

Conclusions

- According to HEADTAIL simulations the DR have to have
- 430 times better transversal shunt impedance than SPS $\left({ }^{18} \mathrm{Ne}\right)$ and
- 60 times better longitudinal shunt impedance than SPS $\left({ }^{18} \mathrm{Ne}\right)$

To Do

- Finish the SPS RF program with ESME simulations
- Study the instabilities at some crucial parts in the SPS RF cycle
- Include other instabilities like those due to Resistive Wall Impedance
- Try to improve Beta Beam's result by tuning the chromaticity
- If result does not improve allot:
- Redesign the Beta Beam - $\mathrm{N}_{\mathrm{B}}, \gamma_{\mathrm{tr}}, \ldots$
- Study impact on physics reach

Backup Slides

Input Values (I)

Parameters	SPS Inj. ${ }^{18} \mathrm{Ne}$	SPS Inj. ${ }^{6} \mathrm{He}$	SPS3 ${ }^{18} \mathrm{Ne}$	SPS $3{ }^{6} \mathrm{He}$	SPS4 ${ }^{18} \mathrm{Ne}$	SPS4 ${ }^{6} \mathrm{He}$
Z	10	2	10	2	10	2
A	18	6	18	6	18	6
h	924	924	924	924	924	924
C [m]	6911.6	6911.6	6911.6	6911.6	6911.6	6911.6
$\gamma_{t r}$	24.0	24.0	24.0	24.0	24.0	24.0
$\mathrm{V}_{\text {RF }}$ [MV]	5.646e-03	1.166e-01	$1.000 \mathrm{e}+00$	$1.000 \mathrm{e}+00$	$1.000 \mathrm{e}+00$	$1.000 \mathrm{e}+00$
$\mathrm{dB} / \mathrm{dt}$ [T/s]	0.00	0.00	0.10	0.10	0.02	0.02
γ	15.5	9.3	13.0	13.0	21.5	21.5
$\delta_{\text {max }}$	2.37e-04	5.37e-04	$1.67 \mathrm{e}-03$	$1.67 \mathrm{e}-03$	1.67e-03	1.67e-03
$\mathrm{E}_{\text {rest }}[\mathrm{MeV}]$	16767.10	5605.54	16767.10	5605.54	16767.10	5605.54
M	20	20	20	20	20	20
L_{b} [m]	5.984	5.984	1.197	1.197	1.197	1.197
N_{b}	$2.48 \mathrm{e}+11$	$7.15 \mathrm{e}+11$	$2.45 \mathrm{e}+11$	$6.75 \mathrm{e}+11$	$2.45 \mathrm{e}+11$	$6.75 \mathrm{e}+11$
N_{m}	1	1	1	1	1	1
$\mathrm{t}_{1 / 2}$ [s]	1.67	0.81	1.67	0.81	1.67	0.81
T_{c} [s]	3.60	6.00	3.60	6.00	3.60	6.00
Q_{x}	26.13	26.13	26.13	26.13	26.13	26.13
\mathbf{Q}_{y}	26.18	26.18	26.18	26.18	26.18	26.18
$\langle\beta\rangle_{\mathbf{x}}[\mathrm{m}]$	54.55	54.55	54.55	54.55	54.55	54.55
$\langle\beta\rangle_{\mathrm{y}}[\mathrm{m}]$	54.59	54.59	54.59	54.59	54.59	54.59
$\langle\mathrm{D}\rangle_{\mathrm{x}}[\mathrm{m}]$	1.83	1.83	1.83	1.83	1.83	1.83
ξ_{x}	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05
ξ_{y}	-0.10	-0.10	-0.10	-0.10	-0.10	-0.10
$\varepsilon_{\mathrm{N}_{\sim}}(1 \sigma)[\pi \mathrm{m} \cdot \mathrm{rad}]$	$1.23 \mathrm{e}-05$	1.23e-05	1.23e-05	1.23e-05	$1.23 \mathrm{e}-05$	$1.23 \mathrm{e}-05$
$\varepsilon_{\mathrm{N},}(1 \sigma)$ [$\left.\pi \mathrm{m} \cdot \mathrm{rad}\right]$	6.60e-06	6.60e-06	6.60e-06	6.60e-06	$6.60 \mathrm{e}-06$	6.60e-06
ε_{1} (full) [eV s]	1.76	0.80	0.90	0.90	0.90	0.90
b_{x} [cm]	28.4	28.4	28.4	28.4	28.4	28.4
$\mathrm{b}_{\mathrm{y}}[\mathrm{cm}]$	6.9	6.9	6.9	6.9	6.9	6.9
$\rho[\Omega \mathrm{m}]$	1.0e-07	1.0e-07	1.0e-07	1.0e-07	1.0e-07	1.0e-07

Input Values (2)

Parameters	SPS5 ${ }^{18} \mathrm{Ne}$	SPS $5{ }^{6} \mathrm{He}$	SPS6 ${ }^{18} \mathrm{Ne}$	SPS $6{ }^{6} \mathrm{He}$
Z	10	2	10	2
A	18	6	18	6
h	4620	4620	4620	4620
C [m]	6911.6	6911.6	6911.6	6911.6
$\gamma_{t r}$	24.0	24.0	24.0	24.0
V_{RF} [MV]	$7.900 \mathrm{e}+00$	$7.900 \mathrm{e}+00$	$7.900 \mathrm{e}+00$	$7.900 \mathrm{e}+00$
$\mathrm{dB} / \mathrm{dt}$ [T / s]	0.02	0.02	0.10	0.10
γ	21.5	21.5	23.5	23.5
$\delta_{\text {max }}$	1.67e-03	1.67e-03	1.67e-03	1.67e-03
$\mathrm{E}_{\text {rest }}[\mathrm{MeV}]$	16767.10	5605.54	16767.10	5605.54
M	20	20	20	20
$L_{b}[m]$	1.197	1.197	1.197	1.197
N_{b}	$2.45 \mathrm{e}+11$	$6.75 \mathrm{e}+11$	$2.45 \mathrm{e}+11$	$6.75 \mathrm{e}+11$
N_{m}	1	1	1	1
$t_{1 / 2}$ [s]	1.67	0.81	1.67	0.81
T_{c} [s]	3.60	6.00	3.60	6.00
Q_{x}	26.13	26.13	26.13	26.13
Q_{y}	26.18	26.18	26.18	26.18
$\langle\beta\rangle_{x}[m]$	54.55	54.55	54.55	54.55
$\langle\beta\rangle_{y}[m]$	54.59	54.59	54.59	54.59
< D $\rangle_{\mathbf{x}}[\mathrm{m}]$	1.83	1.83	1.83	1.83
ξ_{x}	-0.05	-0.05	-0.05	-0.05
ξ_{y}	-0.10	-0.10	-0.10	-0.10
$\varepsilon_{\mathrm{N}_{2}}(1 \sigma)$ [$\left.\pi \mathrm{m} \cdot \mathrm{rad}\right]$	$1.23 \mathrm{e}-05$	$1.23 \mathrm{e}-05$	$1.23 \mathrm{e}-05$	$1.23 \mathrm{e}-05$
$\varepsilon_{\mathrm{N},}(1 \sigma)$ [$\left.\pi \mathrm{m} \cdot \mathrm{rad}\right]$	6.60e-06	6.60e-06	6.60e-06	6.60e-06
ε_{1} (full) [eVs]	0.90	0.90	0.90	0.90
$\mathrm{b}_{\mathrm{x}}[\mathrm{cm}]$	28.4	28.4	28.4	28.4
b_{y} [cm]	6.9	6.9	6.9	6.9
$\rho[\Omega \mathrm{m}]$	1.0e-07	1.0e-07	1.0e-07	1.0e-07

Input Values (3)

Parameters	SPS Ej. ${ }^{18} \mathrm{Ne}$	SPS Ej. ${ }^{6} \mathrm{He}$	DR ${ }^{18} \mathrm{Ne}$	DR ${ }^{6} \mathrm{He}$
Z	10	2	10	2
A	18	6	18	6
h	4620	4620	924	924
C [m]	6911.6	6911.6	6911.6	6911.6
$\gamma_{t r}$	24.0	24.0	27.0	27.0
$\mathrm{V}_{\text {RF }}$ [MV]	$7.900 \mathrm{e}+00$	$7.900 \mathrm{e}+00$	1.196e+01	$2.000 \mathrm{e}+01$
$\mathrm{dB} / \mathrm{dt}$ [T/s]	0.10	0.10	0.00	0.00
γ	100.0	100.0	100.0	100.0
$\delta_{\text {max }}$	$4.73 \mathrm{e}-04$	1.07e-03	$2.50 \mathrm{e}-03$	2.50e-03
$\mathrm{E}_{\text {rest }}[\mathrm{MeV}]$	16767.10	5605.54	16767.10	5605.54
M	20	20	20	20
L_{b} [m]	1.197	1.197	1.967	1.970
N_{b}	$2.45 \mathrm{e}+11$	$6.75 \mathrm{e}+11$	$2.45 \mathrm{e}+11$	$6.75 \mathrm{e}+11$
N_{m}	1	1	20	15
$\mathrm{t}_{1 / 2}$ [s]	1.67	0.81	1.67	0.81
T_{c} [s]	3.60	6.00	3.60	6.00
Q_{x}	26.13	26.13	22.23	22.23
\mathbf{Q}_{y}	26.18	26.18	12.16	12.16
$\langle\beta\rangle_{\mathbf{x}}[\mathrm{m}]$	54.55	54.55	148.25	148.25
$\langle\beta\rangle_{\mathrm{y}}[\mathrm{m}]$	54.59	54.59	173.64	173.64
< D > ${ }_{\mathrm{x}}$ [m]	1.83	1.83	-0.60	-0.60
ξ_{x}	1.00	0.05	0.05	0.05
ξ_{y}	1.00	0.10	0.10	0.10
$\varepsilon_{\mathrm{N}_{\sim}}(1 \sigma)$ [$\left.\pi \mathrm{m} \cdot \mathrm{rad}\right]$	1.23e-05	1.23e-05	1.48e-05	1.48e-05
$\varepsilon_{\mathrm{N},}(1 \sigma)$ [$\left.\pi \mathrm{m} \cdot \mathrm{rad}\right]$	6.60e-06	6.60e-06	$7.90 \mathrm{e}-06$	7.90e-06
ε_{1} (full) [eVs]	2.20	1.00	42.89	14.36
b_{x} [cm]	28.4	28.4	16.0	16.0
b_{y} [cm]	6.9	6.9	16.0	16.0
$\rho[\Omega m]$	1.0e-07	1.0e-07	1.0e-07	1.0e-07

Calculated Values (I)

	SPS Inj. ${ }^{18} \mathrm{Ne}$ $2.48 \mathrm{e}+11$	SPS Inj. ${ }^{6} \mathrm{He}$ $\mathbf{7 . 1 5} \mathrm{e}+11$	SPS3 ${ }^{18} \mathrm{Ne}$ $2.45 \mathrm{e}+11$	SPS $3{ }^{6} \mathrm{He}$ $6.75 \mathrm{e}+11$	SPS $4{ }^{18} \mathrm{Ne}$ $2.45 \mathrm{e}+11$	SPS $4{ }^{6} \mathrm{He}$ $6.75 \mathrm{e}+11$
$\mathrm{r}_{0}[\mathrm{~m}]=\mathrm{r}_{\mathrm{p}} \mathrm{Z}^{2} / \mathrm{A}$	8.53e-18	1.02e-18	8.53e-18	1.02e-18	8.53e-18	1.02e-18
$\mathrm{E}_{\text {tot }}[\mathrm{GeV}]=\gamma \cdot \mathrm{E}_{\text {rest }}$	260.39	52.30	217.97	72.87	360.49	120.52
$\beta=\sqrt{1-1 / \gamma^{2}}$	1.00	0.99	1.00	1.00	1.00	1.00
$\eta=\left\{1 / \gamma_{t r}\right\}^{2} \cdot(1 / \gamma)^{2}$	-2.41e-03	-9.75e-03	-4.18e-03	-4.18e-03	-4.27e-04	-4.27e-04
$\mathrm{T}_{\mathrm{rev}}[\mathrm{ms}]=\mathrm{C} /(\mathrm{\beta c})$	23.1026	23.1882	23.1231	23.1231	23.0796	23.0796
$\omega_{\mathrm{rev}}[\mathrm{MHz}]=2 \pi / \mathrm{T}_{\mathrm{rev}}$	0.27	0.27	0.27	0.27	0.27	0.27
$\sigma_{\delta}=\delta_{\text {max }} / 2$	1.19e-04	2.69e-04	8.34e-04	8.34e-04	8.34e-04	8.34e-04
$\tau_{\mathrm{b}}[\mathrm{ns}]=\mathrm{L}_{\mathrm{b}} /(\mathrm{\beta c})$	20.00	20.08	4.00	4.00	4.00	4.00
$\mathrm{I}_{\mathrm{b}}[\mathrm{A}]=\mathrm{ZeN}_{\mathrm{B}} / \tau_{\mathrm{b}}$	19.87	11.41	98.02	54.01	98.20	54.11
$\varepsilon_{1}^{2 a}[\mathrm{eVs}]=\frac{\pi}{2} \beta^{2} \mathrm{E}_{\text {tot }} \tau_{\mathrm{b}} \delta_{\text {max }}$	1.93	0.88	2.27	0.76	3.77	1.26
$\omega_{s}[\mathbf{k H z}]=\mathbf{Q}_{\mathrm{s}} \cdot \omega_{\mathrm{rev}}$	0.08	0.69	1.17	0.90	0.36	0.28
$\omega_{\mathrm{x}}[\mathrm{MHz}]=\mathbf{Q}_{\mathrm{x}} \cdot \omega_{\mathrm{rev}}$	7.11	7.08	7.10	7.10	7.11	7.11
$\omega_{y}[\mathbf{M H z}]=\mathbf{Q}_{y} \cdot \omega_{\text {rev }}$	7.12	7.10	7.12	7.12	7.13	7.13
$\omega_{c}[\mathrm{GHz}]=\beta \mathrm{c} / \mathbf{b}_{\min (\mathrm{x}, \mathrm{y})}$	4.34	4.32	4.33	4.33	4.34	4.34
$\Delta \mathbf{Q}_{\xi_{\mathrm{g}}}=\xi_{x} \delta_{\text {max }} \mathbf{Q}_{\mathrm{x}}$	-3.10e-04	-7.02e-04	-2.18e-03	-2.18e-03	-2.18e-03	-2.18e-03
$\Delta \mathbf{Q}_{\varepsilon, y}=\xi_{y} \delta_{\max } \mathbf{Q}_{y}$	-6.21e-04	-1.41e-03	-4.37e-03	-4.37e-03	-4.37e-03	-4.37e-03

Calculated Values (2)

	SPS $5{ }^{18} \mathrm{Ne}$ $2.45 \mathrm{e}+11$	SPS5 ${ }^{6} \mathrm{He}$ $6.75 \mathrm{e}+11$	SPS $6{ }^{18} \mathrm{Ne}$ $2.45 \mathrm{e}+11$	SPS $6{ }^{6} \mathrm{He}$ $6.75 \mathrm{e}+11$
$\mathrm{r}_{0}[\mathrm{~m}]=\mathrm{r}_{\mathrm{p}} \mathrm{Z}^{2} / \mathrm{A}$	8.53e-18	1.02e-18	8.53e-18	1.02e-18
$\mathrm{E}_{\text {tot }}[\mathrm{GeV}]=\gamma \cdot \mathrm{E}_{\text {rest }}$	360.49	120.52	394.03	131.73
$\beta=\sqrt{1-1 / \gamma^{2}}$	1.00	1.00	1.00	1.00
$\eta=\left\{1 / \gamma_{t r}\right\}^{2}-(1 / \gamma)^{2}$	-4.27e-04	-4.27e-04	-7.47e-05	-7.47e-05
$\mathrm{T}_{\mathrm{rev}}[\mathrm{ms}]=\mathrm{C} /(\beta \mathrm{c})$	23.0796	23.0796	23.0755	23.0755
$\omega_{\mathrm{rev}}[\mathrm{MHz}]=2 \pi / \mathrm{T}_{\mathrm{rev}}$	0.27	0.27	0.27	0.27
$\sigma_{\delta}=\delta_{\text {max }} / 2$	8.34e-04	8.34e-04	8.34e-04	8.34e-04
$\tau_{\mathrm{b}}[\mathrm{ns}]=\mathrm{L}_{\mathrm{b}} /(\beta \mathrm{c})$	4.00	4.00	4.00	4.00
$\mathrm{I}_{\mathrm{b}}[\mathrm{A}]=\mathrm{ZeN}_{\mathrm{B}} / \tau_{\mathrm{b}}$	98.20	54.11	98.22	54.12
$\varepsilon_{1}^{2 a}[\mathrm{eVs}]=\frac{\pi}{2} \beta^{2} \mathrm{E}_{\text {tot }} \tau_{\mathrm{b}} \delta_{\text {max }}$	3.77	1.26	4.12	1.38
$\omega_{\mathrm{s}}[\mathbf{k H z}]=\mathbf{Q}_{\mathrm{s}} \cdot \omega_{\mathrm{rev}}$	2.26	1.75	0.90	0.70
$\omega_{\mathrm{x}}[\mathrm{MHz}]=\mathbf{Q}_{\mathrm{x}} \cdot \omega_{\mathrm{rev}}$	7.11	7.11	7.11	7.11
$\omega_{y}[\mathrm{MHz}]=\mathbf{Q}_{\mathrm{y}} \cdot \omega_{\mathrm{rev}}$	7.13	7.13	7.13	7.13
$\omega_{c}[\mathrm{GHz}]=\beta \mathrm{c} / \mathrm{b}_{\min (\mathrm{x}, \mathrm{y})}$	4.34	4.34	4.34	4.34
$\Delta Q_{\xi x}=\xi_{x} \delta_{\text {max }} Q_{x}$	-2.18e-03	-2.18e-03	-2.18e-03	-2.18e-03
$\Delta \mathbf{Q}_{\xi_{y}}=\xi_{y} \delta_{\text {max }} \mathbf{Q}_{y}$	-4.37e-03	-4.37e-03	-4.37e-03	-4.37e-03

Calculated Values (3)

	SPS Ej. ${ }^{\text {a }}$ (Ne $2.45 \mathrm{e}+11$	SPS Ej. He $\mathbf{6 . 7 5}+11$	$4.27 e+12$	$7.24 \mathrm{e}+12$
$\mathrm{r}_{0}[\mathrm{~m}]=\mathrm{r}_{\mathrm{p}} \mathrm{Z}^{2} / \mathrm{A}$	8.53e-18	1.02e-18	8.53e-18	1.02e-18
$\mathrm{E}_{\text {tot }}[\mathrm{GeV}]=\gamma \cdot \mathrm{E}_{\text {rest }}$	1676.71	560.55	1676.71	560.55
$\beta=\sqrt{1-1 / \gamma^{2}}$	1.00	1.00	1.00	1.00
$\eta=\left\{1 / \gamma_{\mathrm{tr}}\right\}^{2}-(1 / \gamma)^{2}$	1.64e-03	$1.64 \mathrm{e}-03$	1.27e-03	1.27e-03
$\mathrm{T}_{\mathrm{rev}}[\mathrm{ms}]=\mathrm{C} /(\beta \mathrm{c})$	23.0558	23.0558	23.0558	23.0558
$\omega_{\mathrm{rev}}[\mathrm{MHz}]=2 \pi / \mathrm{T}_{\text {rev }}$	0.27	0.27	0.27	0.27
$\sigma_{\delta}=\delta_{\text {max }} / 2$	2.37e-04	$5.34 \mathrm{e}-04$	1.25e-03	$1.25 \mathrm{e}-03$
$\tau_{\mathrm{b}}[\mathrm{ns}]=\mathrm{L}_{\mathrm{b}} /(\beta \mathrm{c})$	3.99	3.99	6.56	6.57
$\mathrm{I}_{\mathrm{b}}[\mathrm{A}]=\mathrm{ZeN}_{\mathrm{B}} / \tau_{\mathrm{b}}$	98.31	54.17	1041.99	353.19
$\varepsilon_{1}^{2 a}[\mathrm{eVs}]=\frac{\pi}{2} \beta^{2} \mathrm{E}_{\text {tot }} \tau_{\mathrm{b}} \delta_{\text {max }}$	4.98	3.75	43.20	14.46
$\omega_{\mathrm{s}}[\mathrm{kHz}]=\mathbf{Q}_{\mathrm{s}} \cdot \omega_{\mathrm{rev}}$	2.05	1.58	1.00	1.00
$\omega_{\mathrm{x}}[\mathbf{M H z}]=\mathbf{Q}_{\mathrm{x}} \cdot \omega_{\mathrm{rev}}$	7.12	7.12	6.06	6.06
$\omega_{y}[\mathrm{MHz}]=\mathbf{Q}_{\mathrm{y}} \cdot \omega_{\mathrm{rev}}$	7.14	7.14	3.31	3.31
$\omega_{c}[\mathrm{GHz}]=\beta \mathrm{c} / \mathrm{b}_{\min (\mathrm{x}, \mathrm{y})}$	4.34	4.34	1.87	1.87
$\Delta Q_{\xi x}=\xi_{x} \delta_{\text {max }} Q_{x}$	1.24e-02	1.40e-03	2.78e-03	2.78e-03
$\Delta \mathbf{Q}_{\xi_{y}}=\xi_{y y} \delta_{\max } \mathbf{Q}_{\mathrm{y}}$	1.24e-02	$2.80 \mathrm{e}-03$	3.04e-03	$3.04 \mathrm{e}-03$

RF Values - No Acc.

$\left(\delta_{\max }\right)^{*}=\frac{h \varepsilon_{1} c}{\rho E_{\text {tot }} G\left\{\theta_{\mathrm{b}} / 2\right\}}$	$2.373 \mathrm{e}-04$	$5.370 \mathrm{e}-04$	-	-
$\delta_{\text {max }}$	$2.373 \mathrm{e}-04$	$5.370 \mathrm{e}-04$	$2.500 \mathrm{e}-03$	$2.500 \mathrm{e}-03$
$\mathrm{eV}^{*}[\mathrm{MeV}]=\frac{\pi \mathrm{h}\|\eta\| \mathrm{E}_{\mathrm{tot}}\left\{\beta \delta_{\max }\right\}^{2}}{\mathbf{Z}\left(1-\cos \theta_{\mathrm{b}}\right)}$	5.646e-03	1.166e-01	-	-
eV [MeV]	5.646e-03	1.166e-01	$1.196 \mathrm{e}+01$	$2.000 \mathrm{e}+01$
$L_{\mathrm{b}}^{*}[m]=\frac{2 \rho}{\mathrm{~h}} \arccos \left(1-\frac{\pi h \eta E_{\text {tot }}\left(\beta \delta_{\text {max }}\right)^{2}}{Z e V}\right)$	-	-	1.970	1.970
L_{b} [m]	5.984	5.984	1.967	1.970
$\varepsilon_{1}^{*}[\mathrm{eVs}]=\frac{\beta \rho \mathrm{E}_{\mathrm{tot}} \delta_{\text {max }}}{\mathrm{hc}} \mathrm{G}\left\{\theta_{\mathrm{b}} / 2\right\}$	-	-	42.883	14.358
$\varepsilon_{1}[\mathrm{eVs}]$	1.760	0.800	42.890	14.360
$Q_{s}=\sqrt{\frac{h Z e V \mid \eta \cos \phi_{s}}{2 \pi \beta^{2} E_{\text {tot }}}}$	2.778e-04	$2.543 \mathrm{e}-03$	3.653e-03	$3.653 \mathrm{e}-03$
$\theta_{\mathrm{b}}=\frac{\mathrm{hL}}{2 \rho}[\mathrm{rad}]$	2.513	2.513	0.826	0.827
$\frac{\rho\|\eta\| \delta_{\max }^{*}}{Q_{\mathrm{s}} \mathrm{~L}_{\mathrm{b}} / 2}$	0.757	0.757	0.973	0.972

RF Values - Acc. (I)

$$
\left(\delta_{\max }\right)^{*}=?
$$

$$
\delta_{\max }
$$

$$
\mathrm{eV}^{*}[\mathrm{MeV}]=?
$$

$\mathrm{eV}[\mathrm{MeV}]$
$\mathrm{L}_{\mathrm{b}}^{*}[\mathrm{~m}]=$?
$L_{b}[m]$
$\varepsilon_{1}^{*}[\mathrm{eVs}]=$?
$\varepsilon_{1}[\mathrm{eVs}]$
$\phi_{s}\left[^{0}\right]=\operatorname{asin}\left(\frac{2 \pi \rho^{2} B^{\prime}(t)}{V_{r t}}\right)$
$\mathbf{Q}_{\mathrm{s}}=\sqrt{\frac{\mathrm{hZeV} \mid \eta \cos \phi_{\mathrm{s}}}{2 \pi \beta^{2} \mathrm{E}_{\text {tot }}}}$
$\theta_{\mathrm{b}}=\frac{\mathrm{h} \mathrm{L}_{\mathrm{b}}}{\mathbf{2 \rho}}[\mathrm{rad}]$

$\frac{\rho|\eta| \delta_{\max }^{*}}{Q_{s} L_{b} / 2}$

SPS $3{ }^{18} \mathrm{Ne}$	SPS $3{ }^{6} \mathrm{He}$	SPS $4{ }^{18} \mathrm{Ne}$	SPS $4{ }^{6} \mathrm{He}$
$? ?$	$? ?$	$? ?$	$? ?$
$1.668 \mathrm{e}-03$	$1.668 \mathrm{e}-03$	$1.668 \mathrm{e}-03$	$1.668 \mathrm{e}-03$

??
$1.000 \mathrm{e}+00$
??
1.197
1.197
??
0.900
0.900
49.49
8.75
8.75

	SPS5 ${ }^{18} \mathrm{Ne}$	RF Values = Acc. (2)				
		SPS5 ${ }^{6} \mathrm{He}$	SPS6 ${ }^{18} \mathrm{Ne}$	SPS6 ${ }^{6} \mathrm{He}$	SPS Ej. ${ }^{18} \mathrm{Ne}$	SPS Ej. ${ }^{6} \mathrm{He}$
$\left(\delta_{\text {max }}\right)^{*}=$?	??	??	??	??	??	??
$\delta_{\text {max }}$	1.668e-03	$1.668 \mathrm{e}-03$	$1.668 \mathrm{e}-03$	$1.668 \mathrm{e}-03$	$4.734 \mathrm{e}-04$	$1.068 \mathrm{e}-03$
$\mathrm{eV}[\mathrm{MeV}]=?$??	??	??	??	??	??
$\mathrm{eV}[\mathrm{MeV}]$	$7.900 \mathrm{e}+00$					
$\mathrm{L}_{\mathrm{b}}[\mathrm{m}]=$?	??	??	??	??	??	??
$L_{\text {b }}[\mathrm{m}]$	1.197	1.197	1.197	1.197	1.197	1.197
$\varepsilon_{1}^{*}[\mathrm{eVs}]=$?	??	??	??	??	??	??
$\varepsilon_{1}[\mathrm{eVs}]$	0.900	0.900	0.900	0.900	2.200	1.000
$\phi_{s}\left[{ }^{0}\right]=\operatorname{asin}\left(\frac{2 \pi \rho^{2} B^{\prime}(t)}{V_{t t}}\right)$	1.10	1.10	5.52	5.52	5.52	5.52
$\mathbf{Q}_{\mathrm{s}}=\sqrt{\frac{\mathrm{hZeV}\left\|\eta \cos \phi_{\mathrm{s}}\right\|}{2 \pi \beta^{2} E_{\mathrm{tot}}}}$	8.305e-03	6.424e-03	$3.313 \mathrm{e}-03$	$2.562 \mathrm{e}-03$	$7.512 \mathrm{e}-03$	5.810e-03
$\theta_{\mathrm{b}}=\frac{\mathrm{hL}}{2 \rho}[\mathrm{rad}]$	2.514	2.514	2.514	2.514	2.514	2.514
$\frac{\rho\|\eta\| \delta_{\text {max }}^{*}}{Q_{s} L_{b} / 2}$	0.158	0.204	0.069	0.089	0.190	0.553

Beta Beam Instability Studies

- Collective Effect studies with the "Head Tail" simulation program will be made to study instabilities for all beams in the Beta Beam complex
- Instability dependencies of bunch intensities are being investigated for the Decay Ring
(To the right: Instability growth rate ($1 / T$) due to transversal broad band impedance for ${ }^{6} \mathrm{He}$ in DR)

- The extra impedance due to beam loading at the special RF cavity in the Decay Ring will have to be taken into account
- The SPS' RF programs for the Beta Beams (left) are currently being developed in detail (A. Chancé) for the Instability Studies

Longitudinal Parameters - SPS

- Areas in the SPS cycle where to investigate instabilities:

Transversal Instability Limits

HeadTail and Formulas

$$
\xi=\xi \circ \mathrm{org}
$$

HeadTail

Transverse Mode Coupling (TMCI Eq.)

DR ${ }^{18} \mathrm{Ne} ; \mathrm{BB} \perp$

$$
\mathrm{R}_{\perp}=\mathrm{R}_{\perp} \mathrm{sps} / 427
$$

$$
\mathrm{R}_{\perp}=\mathrm{R}_{\perp} \mathrm{sps} / 42
$$

DR ${ }^{6} \mathrm{He} ; \mathrm{BB} \perp$

$$
\mathrm{R}_{\perp}=\mathrm{R}_{\perp}{ }^{\mathrm{sps}} / 73
$$

$$
\mathrm{R}_{\perp}=\mathrm{R}_{\perp}{ }^{\mathrm{sps}} / 9
$$

$\mathrm{N}_{\mathrm{B}}=\mathrm{N}_{\mathrm{B}} \mathrm{org} / ? ?$
$\mathrm{N}_{\mathrm{B}}=\mathrm{N}_{\mathrm{B}}^{\mathrm{org}} / \mathrm{IO}$
$N_{B}=N_{B}{ }^{\circ r g} / 4$

SPS Inj. ${ }^{18} \mathrm{Ne} ; \mathrm{BB} \perp$
$\mathrm{N}_{\mathrm{B}}=\mathrm{N}_{\mathrm{B}}{ }^{\mathrm{org} / ? ?}$
$N_{B}=N_{B}{ }^{\text {org }} / \mathrm{l} 4$
$\mathrm{N}_{\mathrm{B}}=\mathrm{N}_{\mathrm{B}}{ }^{\mathrm{org}}$

Longitudinal Instability Limits

HeadTail and Formulas

$$
\xi=\xi \circ \text { гg }
$$

HeadTail

Micro Wave Instabilities
(Keil Schnell)

$$
\mathrm{R}_{\| \mid}=\mathrm{R}_{\|}{ }^{\mathrm{sps}} / 20
$$

$$
\mathrm{R}_{\|}=\mathrm{R}_{\|} \mathrm{sps} / 4
$$

SPS Ej. ${ }^{18} \mathrm{Ne} ; \mathrm{BB} \|$
$R_{\|}=R_{\|}{ }^{\text {sps }} / 9$

$$
N_{B}=N_{B} \text { org } / 44
$$

SPS Ej. ${ }^{6} \mathrm{He} ;$ BB||
$R_{\|}=R_{\|}{ }^{\text {sps }} / 60$

DR ${ }^{6} \mathrm{He} ; \mathrm{BB}| |$

SPS Inj. ${ }^{18} \mathrm{Ne} ; \mathrm{BB} \|$
$\mathrm{N}_{\mathrm{B}}=\mathrm{N}_{\mathrm{B}}^{\mathrm{org}} / 36$

SPS Inj. ${ }^{6} \mathrm{He} ; \mathrm{BB}| |$
$\mathrm{N}_{\mathrm{B}}=\mathrm{N}_{\mathrm{B}}{ }^{\mathrm{org}}$

DR ${ }^{18} \mathrm{Ne}$ - Longitudinal Broad Band

Each point:

 30000 turns
Stability Limit:

DR ${ }^{6} \mathrm{He}$ - Longitudinal Broad Band

Each point: 30000 turns

Stability Limit:

DR ${ }^{6} \mathrm{He}$

Longitudinal Broad Band Resonance
$\mathrm{N}_{\mathrm{B}}{ }^{\text {org }}=7.24 \mathrm{el} 2$
$\mathrm{R}_{\|}{ }^{\text {org }}=0.2 \mathrm{M} \Omega$
$\xi_{\mathrm{x}}{ }^{\text {org }}=0.05, \xi_{\mathrm{y}}{ }^{\text {org }}=0.1 \mathrm{for}$ DR ($\eta>0$)
$K S: N_{B}=N_{B}{ }^{\circ r g} / 4$
$B I: N_{B}=N_{B}{ }^{\text {org }} / 2$

SPS ${ }^{18} \mathrm{Ne}$ Injection - Long. Broad Band

 $N_{B}=N_{B}{ }^{\circ r g}$ and $\xi=\xi^{\circ r g}$

Head Tail Modes (n)

- The different ways particles in the front (head) of the bunch are positioned compared to particles in the back (tail) of the bunch are grouped in different "modes"
- The "head-tail mode number", n, defines how the head and tail couples in that mode
- The signal of a bunch in a position monitor shows n nodes for mode n :

- These head-tail modes in time domain can be Fourier transformed and squared to get the "head-tail power spectrum", $h_{n}(\omega)$:

$$
p_{n}(t)=\left\{\begin{array}{ll}
\cos \left[(n+1) \pi \frac{t}{\tau_{b}}\right] & , n=0,2,4, \ldots \\
\sin \left[(n+1) \pi \frac{t}{\tau_{b}}\right] & , n=1,3,5, \ldots
\end{array} \quad\left|\mathcal{F}\left(p_{n}(t)\right)\right|^{2}=h_{n}(\omega)\right.
$$

Direct Space Charge

- A particle in a bunch feels the collective Coulomb forces due to fields generated by the charge of the other particles in the bunch
- For relativistic beams the repulsive E forces are cancelled by the contracting B forces \rightarrow tune shift due to space charge $\propto \gamma^{-2}$

$$
\Delta Q_{d s c_{x, y}}=-\frac{\lambda r_{0} R}{2 \beta \gamma^{2} \epsilon_{N_{x, y}}}
$$

- Assuming Gaussian bunches the peak line charge density near the bunch center is

$$
\lambda=N /\left(\sqrt{2 \pi} \sigma_{z}\right) \quad \text { and the full bunch length } \quad L_{b}=4 \sigma_{z}
$$

- For ions $\quad r_{0}=r_{p} Z^{2} / A \quad$ so we get the tune shift
- If absolute value is more than 0.2 it could cause the tune to cross over the resonance lines

Direct Space Charge

$$
\begin{aligned}
& \Delta Q_{d s c_{x, y}}=-\frac{1}{B} \frac{N_{B} r_{0} R}{\pi \gamma^{3} \beta^{2} Q_{x, y}} \frac{\varepsilon_{x, y}^{d s c}}{2 \sigma_{y}^{2}} \\
& \text { where }
\end{aligned}
$$

$$
\begin{array}{ll}
\varepsilon_{x}^{d s c}=\frac{\sigma_{y}^{2}}{\sigma_{x}\left(\sigma_{y}+\sigma_{x}\right)} & \sigma_{x}=\sqrt{\frac{\left\langle\beta_{x}\right\rangle \varepsilon_{N_{x}}^{1 \sigma}}{\gamma \beta}+\left\langle D_{x}\right\rangle^{2}\left(\frac{d p}{p}\right)_{\max }^{2}} \\
\varepsilon_{y}^{d s c}=\frac{\sigma_{y}}{\sigma_{y}+\sigma_{x}} & \sigma_{y}=\sqrt{\frac{\left\langle\beta_{y}\right\rangle \varepsilon_{N_{y}}^{1 \sigma}}{\gamma \beta}}
\end{array}
$$

DSC	DR ${ }^{18} \mathrm{Ne}$	DR ${ }^{6} \mathrm{He}$	SPS Ej. ${ }^{18} \mathrm{Ne}$	SPS Ej. ${ }^{6} \mathrm{He}$	SPS Inj. ${ }^{18} \mathrm{Ne}$	SPS Inj. ${ }^{6} \mathrm{He}$
$\Delta Q_{\text {dsc }_{\mathrm{x}}}$	-0.0402	-0.0082	-0.0109	-0.0036	-0.0916	-0.0881
$\Delta Q_{\text {dsc }_{\mathrm{y}}}$	-0.0930	-0.0189	-0.0149	-0.0049	-0.1252	-0.1204

(added the factor I/B myself; B is the bunching factor)

Direct Space Charge

- For elliptical beam according to Ng

$$
\Delta Q_{d s c_{x, y}}=-\frac{8 N_{B} r_{0} R}{\sqrt{2 \pi} L_{b} \beta \gamma^{2} \sqrt{\epsilon_{N_{x, y}}}\left[\sqrt{\epsilon_{N_{x, y}}}+\sqrt{\epsilon_{N_{y, x}}\left\langle\beta_{y, x}\right\rangle /\left\langle\beta_{x, y}\right\rangle}\right]}
$$

- So let's divide Ng 's equation by 2

$$
\Delta Q_{d s c_{x, y}}=-\frac{4 N_{B} r_{0} R}{\sqrt{2 \pi} L_{b} \beta \gamma^{2} \sqrt{\epsilon_{N_{x, y}}}\left[\sqrt{\epsilon_{N_{x, y}}}+\sqrt{\epsilon_{N_{y, x}}\left\langle\beta_{y, x}\right\rangle /\left\langle\beta_{x, y}\right\rangle}\right]}
$$

DSC	DR ${ }^{18} \mathrm{Ne}$	DR ${ }^{6} \mathrm{He}$	SPS Ej. ${ }^{18} \mathrm{Ne}$	SPS Ej. ${ }^{6} \mathrm{He}$	SPS Inj. ${ }^{18} \mathrm{Ne}$	SPS Inj. ${ }^{6} \mathrm{He}$
$\Delta Q_{\text {dsc }_{\mathrm{x}}}$	-0.1205	-0.0245	-0.0144	-0.0048	-0.1209	-0.1163
$\Delta Q_{\text {dsc }_{y}}$	-0.1785	-0.0364	-0.0196	-0.0065	-0.1651	-0.1589

Image Coefficients for Elliptical Vacuum Chambers

- Assume the beam is centered, then

$$
\varepsilon_{y}^{i n c o h}=-\varepsilon_{x}^{i n c o h}=\frac{h^{2}}{12 \epsilon^{2}}\left[\left(1+k^{\prime 2}\right)\left(\frac{2 K(k)}{\pi}\right)^{2}-2\right]
$$

$\varepsilon_{y}^{c o h}=\frac{h^{2}}{4 \epsilon^{2}}\left[\left(\frac{2 K(k)}{\pi}\right)^{2}-1\right]$
$\varepsilon_{x}^{c o h}=\frac{h^{2}}{4 \epsilon^{2}}\left[1-\left(\frac{2 K(k) k^{\prime}}{\pi}\right)^{2}\right]$
where
$k^{\prime}=\left(\frac{1+2 \sum_{s=1}^{\infty}(-1)^{s} q^{s^{2}}}{1+2 \sum_{s=1}^{\infty} q^{s^{2}}}\right)^{2}$

$$
\begin{aligned}
& \text { When } \mathrm{w}=\mathrm{h} \text { (e.g. } \\
& \text { for the } \mathrm{DR} \text {) then } \\
& \varepsilon_{y}^{i n c o h}=\varepsilon_{x}^{i n c o h}=0 \\
& \varepsilon_{y}^{c o h}=\varepsilon_{x}^{c o h}=1 / 2
\end{aligned}
$$

$$
q=\frac{w-h}{w+h}
$$

$$
k=\sqrt{1-k^{\prime 2}}
$$

$$
K(k)=\int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}}
$$

Resistive Wall Impedance

- Since the conductivity of the beam pipe is not perfect the image current is slowed down, radiates a wake field which gives an impedance
- To get the Resistive Wall Impedance one takes into account that the EM fields penetrate the pipe material to a thickness called "Skin Depth", that equals

$$
\delta_{s k}(\omega)=\sqrt{\frac{2 \rho}{|\omega| \mu}}
$$

where ρ is the materials "bulk resistance"

and then gets the "resistant" (real) and "reactive" (imaginary) parts for the longitudinal and transverse impedances of a cylindrical model with length h
(circumference of the ring is used for h), radius b and thickness $\delta_{\text {sk }}$

$$
\begin{aligned}
& Z_{\perp, r w}(\omega)=(\operatorname{sgn}(\omega)-i) \frac{Z_{0} \delta_{s k}(\omega) h}{2 \pi b^{3}} \approx(\operatorname{sgn}(\omega)-i) \frac{R}{b^{3}} \sqrt{\frac{2 \rho}{\varepsilon_{0}|\omega|}} \\
& z_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \\
& h=C \leqslant 2 \pi R \\
& \mu \approx \mu_{0}
\end{aligned}
$$

- ... To be "plugged in" in Sacherer's formulas ... (see coming slides)

Resonance Impedances

- Wake Fields trapped in cavities or discontinuities in the vacuum chamber cause Resonance Impedances
- Resonance Impedances consist of a real (resistive) part and a imaginary (reactive) part:

$$
Z=Z_{R e}+i Z_{I m}
$$

\rightarrow We see an analogy between Resonance Wake Fields and Electronic Circuits
\rightarrow The Impedance of "high order modes" Wakes can be modeled with the RLC circuit

$$
\rightarrow Z_{\|}(\omega)=\frac{R_{\|}}{1+i Q\left(\frac{\omega_{r}}{\omega}-\frac{\omega}{\omega_{r}}\right)} \quad, \quad Z_{\perp}(\omega)=\frac{R_{\perp} \frac{\omega_{r}}{\omega}}{1+i Q\left(\frac{\omega_{r}}{\omega}-\frac{\omega}{\omega_{r}}\right)}
$$

where $Q=R \sqrt{C / L} \quad$ is the "Quality Factor" and $\omega_{r}=1 / \sqrt{L C} \quad$ is the characteristic frequency for the RLC circuit, or for the pipe it is the "Characteristic Frequency" for the structure causing the Wake Field and $R_{\|}$and R_{\perp} are the "Shunt Impedances"
Take the Inverse FT to get the Wake Fields \rightarrow

$$
W_{\|}(\tau)=\frac{e^{-\omega_{r} \tau / 2 Q}}{C}\left[\cos \left(\omega_{r} \tau \sqrt{1-1 /\left(4 Q^{2}\right)}\right)-\frac{1}{\sqrt{4 Q^{2}}} \sin \left(\omega_{r} \tau \sqrt{1-1 /\left(4 Q^{2}\right)}\right)\right], \tau>0,=0 \tau<0
$$

Narrow \& Broad Band

- From the RLC circuit model we see the behavior of the resonant wake fields and the real and imaginary part of the impedance in the case of high quality factor; Narrow Band

High $Q \rightarrow$ Narrow Band \rightarrow Long Lasting Wake Field \rightarrow Multi Bunch Instabilities
and in the case of low quality factor; Broad Band

Low $Q \rightarrow$ Broad Band \rightarrow Short Lasting Wake Field \rightarrow Single Bunch Instabilities

