

EUROv Special Topics

Costing and Safety

Outline

- Costing workshop summary
 - Workshop's aims
 - Highlights from the presentations (my selection!)
 - Costing Roadmap
- Safety
 - What it means and how to deal with it next steps

Ilias Efthymiopoulos – CERN

(1st) EURONU Costing Workshop - Aims

The cost evaluation of the proposed facilities is part of the design study.

This two days workshop would introduce the cost management techniques to the EURONu participants towards defining a strategy for what needs to be done within the design study.

The workshop will be more of a tutorial and open discussion basis, where the experience from past and present/future HEP accelerator projects will be presented along with methods, techniques and tools used in cost evaluation of big projects.

EUROnu-AnnualMtg_03Jun2010 Ilias Efthymiopoulos

2

□ http://indico.cern.ch/event/EuroNuCostingMar2010

EUROnu-AnnualMtg_03Jun2010 Ilias Efthymiopoulos

3

	Monday, 15 March 2010	
14:00	[4] Costing in Big HEP Projects - The CLIC case by Philippe LEBRUN (CERN) (BE Auditorium Meyrin: 14:00 - 14:45)	S slides
15:00	[5] Cost management plan - error and risk estimates by Prof. Pierre BONNAL (Business Administration Dept HES Geneve, CERN) (BE Auditorium Meyrin: 14:45 - 15:30)	S slides
	[6] Discussion (BE Auditorium Meyrin: 15:30 - 16:00)	
16:00	tea break (16:00 - 16:30)	
	[7] Cost evaluation for civil engineering and ifrastructure works - the LHC experience by John Andrew OSBORNE (CERN) (BE Auditorium Meyrin: 16:30 - 17:00)	S slides
17:00	[8] WP5: Detectors for Neutrinos : cost structure and cost driving elements by Dr. Paul SOLER (University of Glasgow) (BE Auditorium Meyrin: 17:00 - 17:45)	S slides
18:00	[9] Day summary (BE Auditorium Meyrin: 17:45 - 18:30)	

Tuesday, 16 March 2010							
09:00	[11] CERN tool for project costing by Jurgen DE JONGHE (CERN) (32-1-A24: 09:00 - 09:30)	S slides					
10:00	[12] Costing exercize for IDS-NF - a first example by Prof. Kenneth LONG (Imperial College London) (32-1-A24: 09:30 - 10:15)	S slides					
	coffee break (10:15 - 10:45)						
11:00	[13] WP3: Neutrino Factory - cost structure and cost driving elements by Juergen POZIMSKI (Imperial College London) (32-1-A24: 10:45 - 11:30)	S slides					
12:00	[17] WP4: Beta beam - cost structure and cost driving elements by Elena WILDNER (CERN) (32-1-A24: 11:30 - 12:15)	S slides					
	[14] Discussion (32-1-A24: 12:15 - 12:30)						

- ☐ Very interesting presentations the ones marked worth going through
- ☐ Good attendance (~25 people) and lively discussions...

Highlights – Ph.Lebrun "Costing in big HEP projects –the CLIC case"

Highlights – P. Bonnal "Project Cost Management – what is all about?"

Cost Estimating How to estimate?

4 approaches for estimating the costs (expenses & incomes) of a project

intuitive approaches rules-of-thumb

global approaches analogical or top-down

modular

approaches parametric or CER analytical or Cost Estimating Relationship bottom-up

detailed approaches

Highlights – P. Bonnal "Project Cost Management – what is all about?"

Cost Estimating

Global approach | Neighbourhood search

- Linear regressions on various sizing parameters.
- So-called Chilton law for total cost :

$$Cost = a (Size)^b$$
 and $\frac{Cost}{Cost_{ref}} = \left(\frac{Size}{Size_{ref}}\right)^{[0.3 \cdots 0.7]}$

a and b from tables.

▶ So-called **Freiman principle** :

$$Cost = ab^k (Size)^{1-1/k}$$

k: a coefficient depicting the complexity of the project (2 < k < 10) a and b from tables.

"Distance weighing".

Highlights – Ph.Lebrun "Costing in big HEP projects —the CLIC case"

Highlights – Cost optimization

Project

Proton Driver

Hg Target
Capture
Drift
Buncher
Bunch Rotation
Cooling

Acceleration
Linac
0.2 - 1.5 GeV

Acceleration

FFAG
5-10 GeV

Fig 1.4: The baseline layout of a Neutrino Factory.

Resources/ cost

Performance

Cost scaling formula for e circular colliders

$$C = k_1 \ 2\pi \ \rho + k_2 (P_{b} + P_{d}) + k_3 \ L_{c} + k_4 \ Y \ H(P_{b} + P_{d}) / \varepsilon + k_5 \ Y \ H(P_{b} + P_{d}) + k_6$$

Can we imagine a similar "cost optimization formula" for a Neutrino Factory?

Highlights – Cost optimization

☐ Need to define cost optimization cycles, and continuous follow-up as the design progresses...

Feedback to technical design: some cost drivers & potential saving options for CLIC

Cost driver	Cost saving impact	Cost mitigation option	Alternative	Risk/benefit of alternative	Specific actions
Accelerating structure stacked disc construction	Н		Quadrant construction	Technical validation pending	Industrial cost studies, prototyping
Accelerating structure vacuum tank	М		Sealed construction	Leakage	Prototyping
Production yield of accelerating structures	M to H	Production control and testing			Industrial prototyping & preseries production
Replacement of 80 MV /m accelerating structures	М		Reinstall and reuse 80 MV/m structures	Maximum energy	
PETS on-off mechanism	М	Develop and industrialize			
Drive beam quadrupoles: unprecedented number	М	Automated manufacturing	Customization to position in decelerator	Allows series powering To be developed	Specification from beam physics, industrial study
Powering of drive beam quadrupoles	М	Novel powering scheme ("intelligent bus")	Series powering (plus trim windings?)	Reduce cabling, limit power consumption	Specification from beam physics
Reliability of power converters	М		Hot spares	Improved availability of CLIC	Specification from beam physics

Cost impac

- L Order of 10 MCHF
- M Order of 100 MCHF
- Order of 1 BCHF

Highlights – Cost estimate and variance

Cost variance factors

- Technical design
 - Evolution of system configuration
 - Maturity of component design
 - Technology breakthroughs
 - Variation of applicable regulations
- Industrial execution
 - Qualification & experience of vendors
 - State of completion of R&D, of industrialization
 - Series production, automation & learning curve
 - Rejection rate of production process
- Structure of market
 - Mono/oligopoly
 - Mono/oligopsone
- Commercial strategy of vendor
 - Market penetration
 - Competing productions
- Inflation and escalation
 - Raw materials
 - Industrial prices
- International procurement
 - Exchange rates
 - Taxes, custom duties

Engineering judgement of responsible

Technical definition

Contract adjudication

Procurement

Reflected in scatter of offers received from vendors (LHC experience)

Tracked and compensated

Outside project contro

Highlights – P. Bonnal "Project Cost Management Plan – error and risk estimates "

« Best PM Practices »

Project cost estimate must include:

- Resulting figure (incl. cost breakdown structure, schedule)
- → Approach used (global, modular, detailed) → Accuracy
- Assumptions (incl. sourcing of economical rates and indices)
- → Risks (threaths and opportunities) → Project Risk Register.

Cost figures must be:

- Sourced (historical data, price inquiry...)
- Localised (location cost factor, FX rate...)
- Discounted (date stamped as if all items were bought now)
- Converted and hence given in the « Project Currency ».

Any project cost estimate should go with a risk register!

$$S = P \times C$$

PC	.05	.1	.2	.4	.8
.9	.05	.09	.18	.36	.72
.7	.04	.07	.14	.28	.56
.5	.03	.05	.10	.20	.40
.3	.02	.03	.06	.12	.24
.1	.01	.01	.02	.04	.08

Accept Cancel Mitigate Transfer

13

Highlights – J Osborne "Cost evaluation for civil engineering and infrastructure works - the LHC experience"

Highlights – J. De Jonghe "CERN tool for project costing"

Highlights – K. Elsener "CNGS project cost management - lessons learned"

- Contingency
 - CNGS got a few percent of contingency, clearly not enough
- Civil engineering
 - CE drawings were ready in time before tendering -> no change requests, no extra cost
 - CE consultancy services -> very detailed track record of work progress and problems,
 24h every day of CE works -> huge claim by contractor had no chance to succeed
 - Underground Civil Engineering: a (under-)world of its own!
- Infrastructure
 - Industrial standards are not, generally, sufficient for areas with high intensity beams
- Safety matters
- Special and in-kind contributions
 - Follow-up through project lifetime, maintenance once delivered to the final site?

Costing workshop – What we learnt

- ☐ The Work Breakdown Structure (WBS) of each facility is the key element
 - Should be as complete and accurate as possible
 - Include infrastructure and services (CE ~30% of the total budget)
- Construction cost only or include R&D?
 - Include it in the costing tables but not in the final estimate?
- ☐ Would maintenance & operation, **spares** and dismantling costs be included?
 - Yes! − up to some point
- Manpower estimates and associated cost?
 - Manpower should be included in FTEs reporting possibility in real cost
- How to estimate the cost of components before the R&D (and prototyping) is fully completed?
 - Need to perform risk analysis and impact on cost estimates
- ☐ Involve the engineers responsible for the major cost driving elements to assure fast information flow during performance optimization modifications
 - Additional resources or ability to approach expertise in particular at CERN would be essential

Costing workshop - Outcome

- ☐ CERN has to be the reference site for all: Neutrino Factory, Beta-Beam, Super-Beam
- Using the CERN costing tool is the agreed way to go
 - Profit from the available structure, support
 - Some work is required to customize it to our needs
 - How can we profit from existing knowledge from various projects ???
 - Synergies with CLIC, return experience from LHC, LEP, NF Design studies → create a HEP project cost database?
- Handling of options the "lego" game
 - Combine options between facilities & detectors & localization
 - Would be possible to define a Facility optimization formula for the cost ???
 - F = f (performance, v-source, detector, localization)

EUROnu should remain as the master project to assure sharing of information and studies between the options

- ☐ IDS-NF agreed to use the same tool for the cost evaluation
 - However this involves additional options on sites/detectors
 - Can this also provide additional help and knowledge for costing issues engineering manpower?

EUROnu Costing exercise – Roadmap

Costing panel

- reps from each WP as cost contact persons
- EURONU MB
- ☐ Tasks:
 - Trained to use the costing tool
 - Responsible for collecting information and cost update in the tool

March 2011
IDS/NF Interim

Design Report

Dec 2011

Cost review workshop

 Review of cost estimates for each facility in view of the final report

Nov/Dec 2010

2nd Costing

workshop

- Complete WBS
- First global cost evaluation
- Costing session

EURONU annual

June'10:

meeting

Costing workshop - Review WBS

- Training
- Decide on costing strategy

CERN support

Project Office support: costing tool, consultancy

Streamline requests and collaboration via the EUROnu Costing Panel

EUROnu Costing exercise - Challenges ahead

☐ The manpower will be the limiting factor

- Several parts of each facility NOT included in the EURONU
- Parts are only designed not fully engineered
- Balance of available manpower between physics (design/simulation) and engineering
- Available expertise in infrastructure estimates?
- Localization exercises
 - would need local experts to get estimates CERN?
 - include safety issues and impact on cost

☐ Final target for cost estimate in the final report?

- ± 50 % (±30)? what is realistic and "politically correct" at this stage?
- Aim for better precision on the relative cost between facilities ±30 or less??

SAFETY

EUROnu Safety – What it means?

- ☐ Identify safety issues in the project
 - Safety of **personnel** during installation, operation, maintenance and dismantling actions
 - Safety to materials/equipment assure their operation as required by the specs
 - Impact to the **environment** during installation, operation and dismantling of the facility
- ☐ Do risk analysis for each identified safety issue
 - \blacksquare Ways to mitigate the risk \rightarrow incorporate in the design, include in the cost estimate
 - Classify the risks → setup the project risk register

EUROnu Safety – What it means?

EUROnu-AnnualMtg 03Jun2010

Ilias Efthymiopoulos

EUROnu Safety - Roadmap

Safety panel

- reps from each WP as cost contact persons
- ☐ EURONU MB
- ☐ Tasks:
 - Collect information on safety issues
 - Organize risk analysis reviews
- ☐ Safety = Costing Panel????

Sep/Oct'10: Safety Hearings

- Panel session
- Review safety issues & mitigation options

Jan/Feb 2011

Safety workshop

- Review of HEP projects wrt safety
- Presentation of EUROnu safety issues to outside experts

Dec 2011

Safety review workshop

 Review risk register for each facility in view of the final report

- Preliminary list of safety issues

