

Review of CERN Proton Driver bunch compression studies

Contents

- Plans for possible future new LHC injectors (1st scenario)
- Plans for Linac4 plus upgrade of existing LHC injectors (2nd scenario)
- Potential extensions for Neutrino Factory with a high power SPL: SPL-Based Proton Driver
- Summary

Masamitsu Aiba

- IDS-NF Meeting, 23 March 2009
- NuFact 08, June 30 05 July, 2008
- CERN-AB-2008-048 BI, CERN-AB-2008-060 BI
- Elena Benedetto
 - NuFact 09, July 20-25, 2009
- Roland Garoby
 - ECFA, EuCARD, NEU2012 Workshop, 1-3 October 2009, CERN, CH
 - EuCARD Annual Meeting, 14-16 April 2010, STFC, UK

Plans for possible future new LHC injectors (1st scenario)

	Present	Future	
			Not suitable for a v-Factory
50 MeV	Linac2	T	-Fa
160 MeV		Linac4	ot s a v
		•	for N
1.4 GeV	PSB	LP-SPL	
4 GeV			
26 GeV 50 GeV	PS	PS2	v-Factor upgrade
450 GeV	SPS		& comp + muon storage
	LHC /		LP-SPL: L
7 TeV	sLHC		PS2: Higl sLHC: "S

1. Reliability \uparrow

The present accelerators get aged and operate far beyond their initial design parameters

⇒ Interest of upgraded/new accelerators fitted to the LHC and its future needs

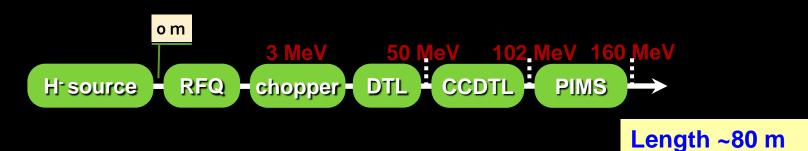
2. Performance \uparrow

- Luminosity depends upon beam brightness N/ε^*
- Brightness limited by space charge at injector low energy

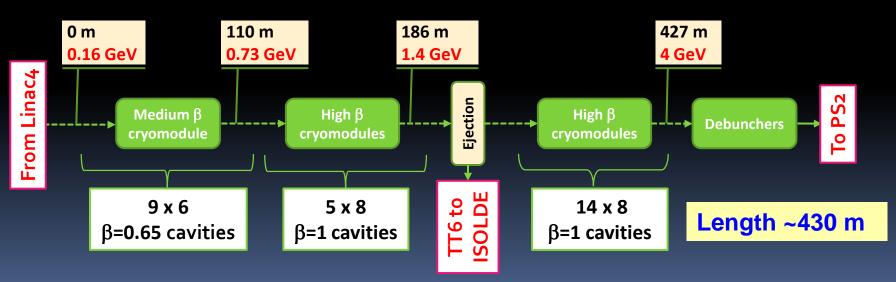
\Rightarrow Call for increase the synchrotron injection energy

v-Factory needs LP-SPL upgrade + accumulator & compressor + target + muon accelerator & storage ring complex $L \propto \frac{N_b}{\varepsilon_{X,Y}} \cdot N_b \cdot k_b \quad \Delta Q_{SC} \propto \frac{N_b}{\varepsilon_{X,Y}} \cdot \frac{R}{\beta \gamma^2}$ $N_b : \text{ number of protons/bunch}$ $k_b : \text{ number of bunches/ring}$

 $\mathcal{E}_{X,Y}$: normalized transverse emittances


R: accelerator mean radius

LP-SPL: Low Power SPL (kinetic energy 4 GeV) PS2: High Energy PS (~ 5 to 50 GeV at 0.3 Hz) sLHC: "Super-luminosity" LHC (up to 10³⁵ cm⁻²s⁻¹)



Block diagram of LINAC4

Block diagram of LP-SPL

2nd EuroNu Plenary Meeting

Linac 4 and LP-SPL beam characteristics

 $/(\beta\gamma^2)_{50MeV} = 2 \rightarrow$ htness in PSB			PSB H⁻ ch exchange ir	narge njection
	Linac4		LP-SPL	
Output kinetic energy [GeV]	0.16		4	
Av. linac pulse current [mA]	40 (10 ¹⁴ H ⁻ /p	oulse)	20	
Pulsing rate [Hz]	2		2	
Beam pulse duration [ms]	1.2		0.9	
Beam power [MW]	0.0051		0.14	

50 Hz max. pulsing rate for RF structures \rightarrow □ Power supplies and electronics well-proportioned for PSB and LP-SPL

□ structures and klystrons compatible with HP-SPL

Site layout

injectors

0

Ē

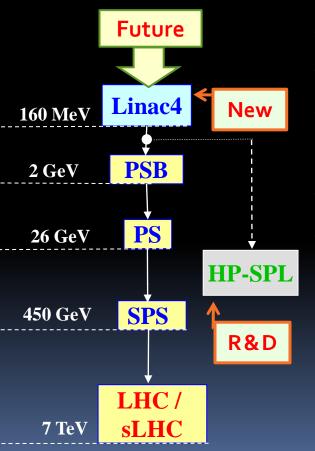
existing

of

upgrade

plus

Linac4


for

Plans

2nd EuroNu Plenary Meeting

Plans for Linac4 plus upgrade of existing LHC injectors (2nd scenario)

- New 160 MeV Linac4 (under construction)
- Increase the energy the PSB output energy to ~2 GeV
- Upgrade the PS for 2 GeV injection
- Upgrade the PS and SPS to accelerate and operate beam with higher brightness and longitudinal density
- R & D for a high power SPL
- Maintain potential for Neutrinos physics programme

LP-SPL & PS2 not needed anymore

HP-SPL: High Power SPL (kinetic energy 5 GeV) sLHC: "Super-luminosity" LHC (up to 10³⁵ cm⁻²s⁻¹)

M.M. - EUROnu 02/06/2010

HP-SPL beam characteristics

Twice more beam current requires twice more klystrons				
		HP-SPL	option 1	HP–SPL option 2
Output	t kinetic energy [GeV]	4 or 5 ^a		4 or 5 ^a
Av. lina	ac pulse current [mA]	20	Å	40 ^b
Pulsing rate [Hz]		50		50
Beam	pulse duration [ms]	0.9		1.2 ^b
Beam power [MW]		2.25 MW or 4.5 MW ((2.5 GeV) 5 GeV)	5 MW (2.5 GeV) and 4 MW (5 GeV)
^a needed for a v-factory, ^b needed for 2 users of h gh/beam power or for 5 MW at 2.5 GeV				
Г	Faster nulsing rate necessita			

Faster pulsing rate necessitate more supplies, cooling ...

Block diagram of HP-SPL

- Upgrade of infrastructure (cooling water, electricity, cryogenics etc.)
 - Replacement of klystron power supplies,
- Addition of 5 high β cryomodules to accelerate up to 5 GeV (for v-Factory)

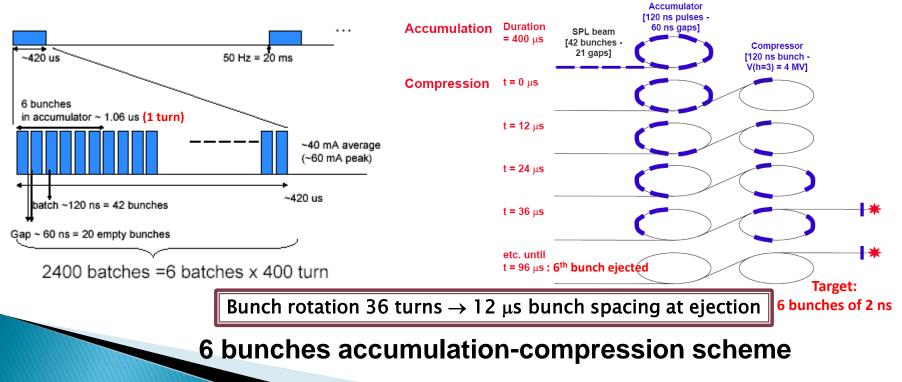
SPL [160 MeV \rightarrow 4 (5?) GeV] with ejection at intermediate energy

 \bullet

v-factory: SPL-Based Proton Driver

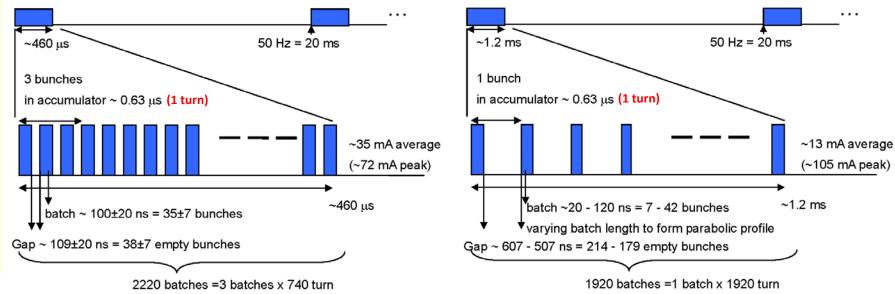
Parameters	Accumulator (6-bunches)	Accumulator (3 & 1-bunches)	
Circumference [m]	318.5	185.8	
Nb. of accumulation turns	400	640/1920	
Nb. of bunches	6	3/1	
Nb. of protons per bunch	1.67×10 ¹³	3.34×10 ¹³ / 10 ¹⁴	
Gamma transition (γ_t)	6.33		
Slip factor ($\eta = \gamma_t^{-2} - \gamma^{-2}$)	~0* (isochronous ring no RF system)		

Parameters	Compressor ("6-bunches")	Compressor (3 &1-bunches)
Circumference [m]	314.2	200.0
Nb. of compression turns	36	86
Nb. of bunches	3	3/1
Nb. of protons per bunch	1.67×10 ¹³	3.34×10 ¹³ /10 ¹⁴
RF voltage on h=3 [MV]	4	1.7
Gamma transition (γ_t)	2.3	2.83
Slip factor ($\eta = \gamma_t^{-2} - \gamma^{-2}$)	0.16**	0.10**


* To "freeze" the bunches longitudinally during accumulation so that no RF cavities are needed ** Large slip factor to do the phase rotation rapidly to fulfill the total burst duration requirement

Bunch generation for a v-factory

- A v-Factory Proton Driver must deliver a 4 MW beam power at 5-15 GeV, in 1-6 ns rms bunches (~2 ns) spaced by ~16 ms onto a production target, at a 50 Hz repetition rate.
- Chopped SPL beam is accumulated in a few long bunches (120 ns) via H⁻ injection.
- Accumulator is Isochronous to maintain the SPL beam time structure, no RF to minimize the impedance.
- Singly bunch transfer to the compressor \rightarrow bunch rotation \rightarrow ejection to the target.

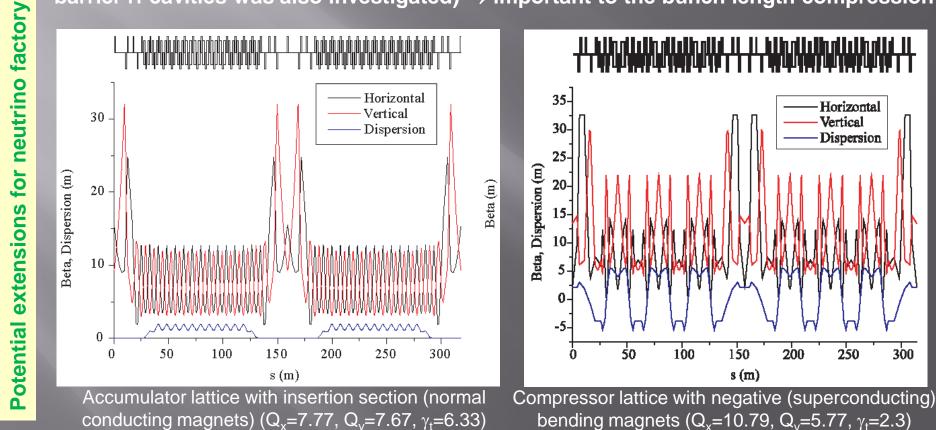


Bunch generation for a v-factory

Nb. of accumuled bunches	6	3	1
Peak/mean current [mA]	60/40	72/35	105/13
Pulse duration [µs]	400	460	1200

SPL beam for accumulation

3- bunches accumulation

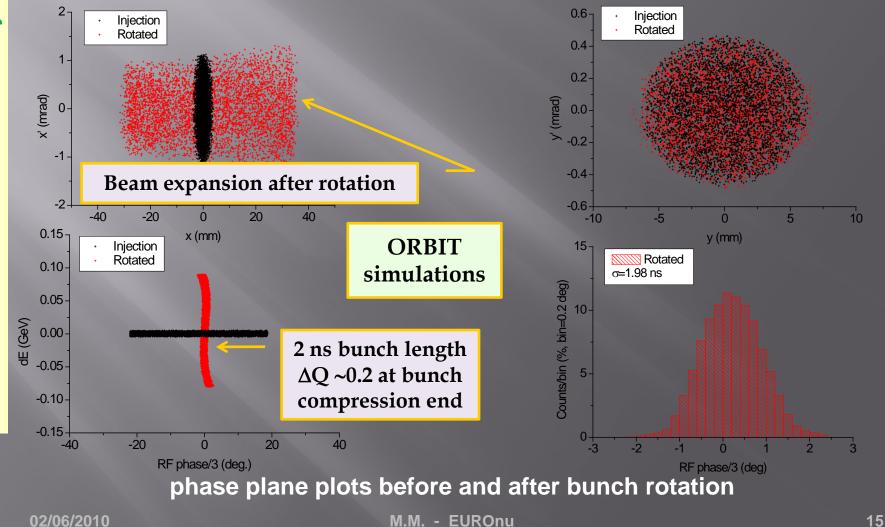

1- bunch accumulation

Accumulator and compressor lattices

Isochronous accumulator conserve the energy spread during accumulation (ring with barrier rf cavities was also investigated) \rightarrow important to the bunch length compression

Accumulator and compressor lattices for the 6-bunches scheme

M.M. - EUROnu


300

Compressor bunch rotation

3µm (rms physical) transverse emittances satisfy needs for foil heating, aperture, space charge and beam size on target

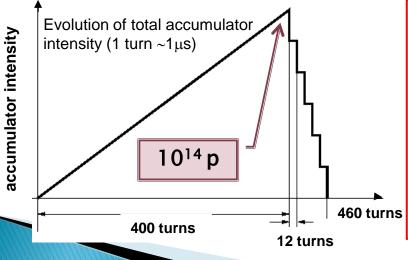
Accumulator impedance

Contributions

Transverse plane:

Resistive wall: beam pipe resistivity

Narrow-band resonators: not relevant since no RF cavities in the accumulator


Broad-Band resonator: beam-pipe discontinuities

Electron cloud: not an issue as no major electron build-up anticipated

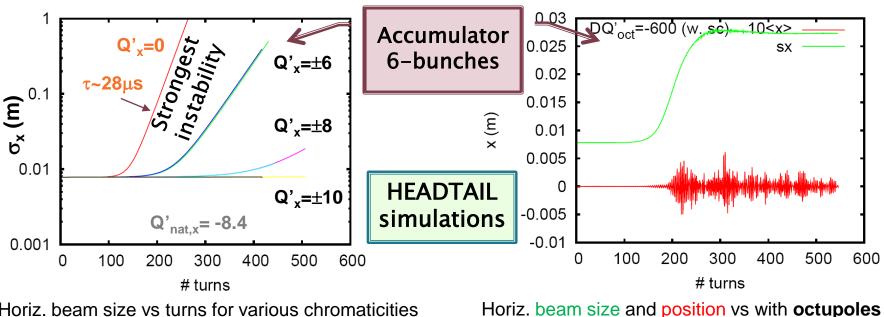
Longitudinal plane:

Narrow-band resonators: not relevant since no RF cavities Broad-Band resonator: kickers and other discontinuities

Mainly single-bunch instabilities (since narrow-band neglected)

PESSIMISTIC analysis:

Full intensity assumed over the whole storage time whereas:


- accumulation takes place over 400 μs → the intensity growths from 0 to10¹⁴ protons
 bunch transfer to compressor lasts 60 μs
- bunch rotation and extraction process in the compressor lasts 96 μ s (5×12 turns to empty the accumulator + 3×12 turns to complete rotation of the remaining bunch and ejection)

Transverse Broad-Band Impedance

Can be cured by introducing a quantity of tune spread

Horiz. beam size vs turns for various chromaticities (BB resonator : $1M\Omega/m$, $Q_R=1$, $f_R=1GHz$)

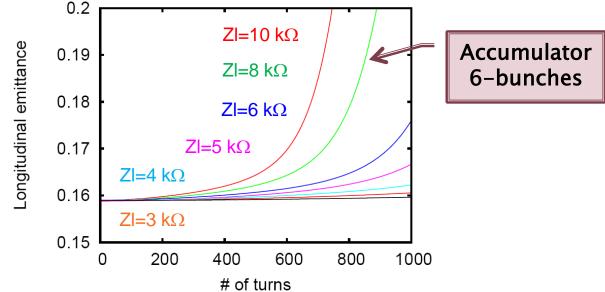
BBI cured with sextupoles (by chromaticity)

- Positive/negative values of Q' are OK (η~0)
- Need chromaticity |Q'|>10 tu cure the instability
 - $\rightarrow \Delta Q_{rms} \sim 0.01$ for $(\Delta p/p)_{rms} \sim 10^{-3}$

BBI cured with octupoles (detuning vs amplitude)

- Beam size is growing until it stops when detuning is effective
- $Q''_{xx} \sim 1200$ (-2000) required to cure instability $\rightarrow \Delta Q_{rms} \sim 0.006$ (for $\sigma_x \sim 10$ mm)

M.M. - EUROnu 02/06/2010

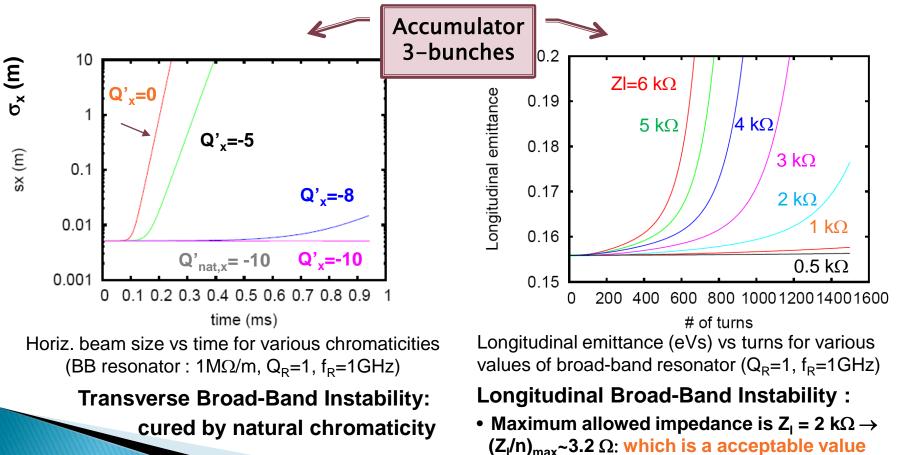


Longitudinal Broad-Band Impedance

Major contribution from the injection and ejection kickers (since no RF)

- 1. Isochronous ring
 - No RF cavities \rightarrow negligible narrow-band impedance, beam frozen longitudinally
- 2. Broad-Band impedance \rightarrow microwave instability
- 3. If only $\eta_0=0$ considered: the instability threshold is zero and the rise time is infinity

Longitudinal emittance (eVs) vs turns for various values of broad-band resonator ($Q_R=1$, $f_R=1$ GHz)


 $Z_l < 5 \ k\Omega \rightarrow Z_l/n < 5 \ \Omega$: a few Ω easily reached in recent machines

Transverse/Longitudinal Broad Band Impedances

Can be cured by introducing a quantity of tune spread

Conclusion on accumulator

and compressor instability studies 6/3-bunch accumulator options is/seems feasible and under control

Space charge okay \rightarrow it guided in definition of emittance and bunch length & shape in the accumulator design

Accumulator impedance

- narrow-band component negligible no RF-cavities
- resistive wall not an issue long rise-time compared to accumulation time
- e-cloud not an issue \rightarrow flat and long bunch, no multipacting
- □ longitudinal BB $\rightarrow Z_{l}/n < 5 \Omega$ + error-bar (f_R) (~few Ohm easily achieved in modern machines)
- transverse BB okay \rightarrow fast rising instability damped by by chromaticity ($|\xi| \sim 1.3$) and/or amplitude-detuning induced by octupoles
 - need $\Delta Q \sim 0.02 \rightarrow$ okay for tune footprint/resonance
 - assumed $R_t=1MW/m \rightarrow$ scaling laws with higher value of BB impedance

6/3-bunch compressor option should be feasible → beam stored for only ~ 11% of the accumulator storage time

• Space charge okay $\rightarrow \Delta Q \sim 0.2$ at the end of bunch compression, horizontal beam expansion reduces space charge

Summary

Progress towards future pulsed proton drivers at CERN made:

- Ist scenario (early scenario)
 - New LHC injectors (Linac4, LP-SPL, PS2) and SPS consolidation
- 2nd scenario (substitute scenario)
 - Linac4 with consolidation (refurbishing) of existing LHC injectors (PSB, PS, SPS)
 - High Power SPL R & D
 - SPL-based proton driver including
 - High Power SPL

Proton drivers accumulator and compressor rings