Towards a unified treatment of systematic errors

Anselmo Cervera Villanueva

IFIC (Valencia)

Andrea Donini

IFT (Madrid) & IFIC (Valencia)

EURO-v general meeting

Strasbourg, 2 June 2010

Ingreedients

• To evaluate the performance of a given facility we need:

 $N_{v''} e^{xp}(E') = M_{v''v'}(E',E) \sigma_{v'}(E) P_{v'v}(E,A, \text{ osc param}) \Phi_{v}(E)$ detection x-section propagation flux

• And δN_{v} , exp(E')

Ingreedients

• To evaluate the performance of a given facility we need:

 $N_{\nu}^{,,exp}(E') = M_{\nu''\nu'}(E',E) \sigma_{\nu'}(E) P_{\nu'\nu}(E,A, \text{ osc param}) \Phi_{\nu}(E)$ detection x-section propagation flux

• And δN_{v} , exp(E')

Ingreedients

To evaluate the performance of a given facility we need:

 $N_{v''} \exp(E') = M_{v''v'}(E',E) \sigma_{v'}(E) P_{v'v}(E,A, \text{ osc param}) \Phi_{v}(E)$ detection x-section propagation flux

• And δN_{v} , exp(E')

Neutrino flux

- We need input from accelerator group to understand all effects
- Its probably better to divide the error in two contributions
 - energy spectrum (normalised to unity) and total flux
- Sources of systematics:
 - Super-beam
 - * p.o.t, hadron production, horn simulation, near detector, ...
 - Beta-Beam
 - Number of stored ions. Polarisation ?, ...
 - Nufact
 - Number of stored muons, beam divergence and polarization
- Beam instrumentation and near detectors for Nufact and beta-Beam
 - In a first phase the flux can be computed theoretically from few parameters (N_µ, γ , and P for Nufact)
 - Once near detector results are available the near detector group should provide the flux (same flux with smaller errors)
- Input for fits for all facilities:
 - Energy spectrum (normalised to unity) with error bars for each neutrino type
 - Total flux with error for each neutrino type

Propagation

- Source of systematics
 - matter density:
 - Which error is being assumed ?
- error on oscillation parameters. Is not a systematic
 - atmospherics are free in the fit and usually marginalised over
 - solar are kept fixed
- See next talk by W. Winter

Cross section

- The oscillation fit only needs total x-section vs energy for each neutrino type
- However, detector efficiencies and backgrounds depend on the relative abundance of the different reaction types (QEL, RES, CC1pi, Coh, charm)
- The x-section used for oscillation fit (# events in far detector) must be the same used for the calculation of detector efficiencies
- Contribution to systematics are
 - difference between neutrinos and antineutrinos
 - difference between $\nu_e, \ \nu_\mu \mbox{ and } \nu_\tau$
 - x-section for specific processes:
 - * i.e. charm production for MIND
- Input for fits:
 - total x-section vs energy with error bars for each neutrino type:
 6 histograms (neutrinos and antineutrinos)

Far detector systematics

- See talk in previous session by A. Laing
- Sources of systematics
 - Assumptions in the simulation
 - Attenuation length in scintillator bars
 - Photodetector threshold
 - MS non gaussian tails
 - **※**
 - x-sections for specific processes: QEL, RES, DIS, coh, charm, ...
 - Fiducial volume definition (vertex determination)
- Input for fits
 - response matrix for each combination of two neutrino types

 $M[\nu_{e} - \nu_{\mu}]$ (E',E)

Fraction of v_e 's with true energy E reconstructed as a v_{μ} with energy E'

Example for MIND

• For $\overline{\nu}_{\mu}$, ν_e beam, searching for $\nu_e \sim \nu_{\mu}$ oscillation

- $M[\nu_{\mu}-\nu_{\mu}]$ (E',E) signal efficiency
- $M[v_e v_\mu]$ (E',E) from beam
- $M[v_{\tau}-v_{\mu}]$ (E',E) from $v_e \sim v_{\tau}$ subdominant oscillation (A. Donini's talk)
- $M[\overline{\nu_{\mu}}-\nu_{\mu}]$ (E',E) from beam (charge mis-id, hadron decay, ...)
- $M[\overline{v_e} v_\mu]$ (E',E) from $\overline{v_\mu} \sim \overline{v_e}$ subdominant oscillation → negligible
- $\frac{M[\overline{v_{\tau}} v_{\mu}] (E', E) \quad \text{from } \overline{v_{\mu}} \sim \overline{v_{\tau}} \text{ dominant oscillation} \longrightarrow \underset{x}{\text{negligible }?}$

tau-mu BR

Example for MIND

arXiv:1004.2798. Separate CC and NC

signal $M[\nu_{\mu}-\nu_{\mu}]$ (E',E) efficiency (10^{-2}) true energy 10-15 0-2.5 2.5-3.5 3.5-4.5 4.5-5.5 6.5-7.5 7.5-10 15-20 20 - 2525-30 5.5-6.5 0 0 - 2.50 0 0 0 0 0 0 0 0 0 2.5-3.5 1.78 1.260.01 0 0 0 0 0 0 0 0 3.5-4.5 6.54 0.20 0.04 0 0 0 0 0 0 0.495.94 rec energy 4.5-5.5 1.71 16.07 0.01 0 0 0.08 20.24 0.68 0.03 0 0 5.5-6.5 0.04 28.25 0.07 0 0.39 6.04 20.721.59 0 0 0 6.5-7.5 7.26 0 0 0.121.18 31.8220.231.21 0.01 0 0 7.5-10 0 0.09 0.702.3111.2240.36 38.50 1.38 0.01 0.01 0.01 0 0.06 0.30 0.671.1826.7647.64 2.150.0750.032 10 - 152.2915 - 200 0 0.14 0.32 0.24 0.350.58 19.15 40.25 2.680.26 0 0.10 0.07 0.250.17 0.66 24.72 33.40 2.87 20-25 0 0.14 25-30 0 0 0 0.12 0.07 0.06 0.120.151.77 28.1527.86 0 0.01 0.04 0.09 0.33 0.40 0.44 0.43 0.62 4.9037.72 overflow

$M[\overline{\nu_{\mu}}^{CC}-\nu_{\mu}]$ (E',E)

		0-2.5	2.5-3.5	3.5-4.5	4.5-5.5	5.5-6.5	6.5-7.5	7.5-10	10-15	15-20	20-25	25-30
(10-3)	0-2.5	0	0	0	0	0	0	0	0	0	0	0
	2.5-3.5	0	0	0.14	0	0	0	0	0	0	0	0
	3.5-4.5	0	0	0.29	0	0	0	0	0	0	0	0
	4.5-5.5	0	0	0.43	0.29	0.14	0	0	0	0	0	0
	5.5-6.5	0	0	0.14	0.15	0.14	0	0	0	0	0	0
	6.5-7.5	0	0	0	0.15	0	0.29	0.06	0	0	0.03	0
(10°)	7.5-10	0	0	0.14	0.15	0.72	0	0.29	0.03	0.03	0	0
	10-15	0	0	0	0.29	0.29	0.15	0.29	0.29	0.03	0.03	0.03
	15-20	0	0	0	0.15	0	0	0	0.26	0.20	0.09	0.03
	20-25	0	0	0	0	0	0	0.06	0.06	0.03	0.09	0.06
	25-30	0	0	0	0	0	0	0	0	0.03	0.06	0.09
	overflow	0	0	0	0.15	0	0	0	0.06	0.03	0.14	0.17

M[$v_x^{NC} - v_\mu$] (E',E) x=e, μ , τ (and $\overline{\nu}$)

	0-2.5	2.5-3.5	3.5-4.5	4.5-5.5	5.5-6.5	6.5-7.5	7.5-10	10-15	15-20	20-25	25-30
0-2.5	0	0	0	0	0	0	0	0	0	0	0
2.5-3.5	0	0.01	0	0.01	0	0	0	0	0	0	0
3.5-4.5	0	0	0.02	0.01	0.02	0	0	0	0	0	0
4.5-5.5	0.03	0.05	0.02	0.02	0.01	0.01	0	0.01	0.01	0.01	0
5.5-6.5	0	0	0.02	0.02	0.01	0.04	0.01	0.01	0.01	0	0.01
6.5-7.5	0	0.01	0	0	0.02	0	0	0.01	0	0.01	0
7.5-10	0	0.01	0.01	0.01	0	0	0	0.01	0	0	0
10-15	0	0	0	0	0	0	0	0	0.01	0.01	0
15-20	0	0	0	0	0.01	0	0	0	0	0	0
20-25	0	0	0	0	0	0	0	0	0	0	0
25-30	0	0	0	0	0	0	0	0	0	0	0
overflow	0	0	0	0	0	0	0	0	0	0	0

 (10^{-3})

9

 $M[v_e^{CC} - v_\mu] (E', E)$

	0-2.5	2.5-3.5	3.5-4.5	4.5-5.5	5.5-6.5	6.5-7.5	7.5-10	10-15	15-20	20-25	25-30]
0-2.5	0	0	0	0	0	0	0	0	0	0	0	ĺ
2.5-3.5	0	0	0	0	0	0	0	0	0	0	0	1
3.5-4.5	0	0	0	0	0	0	0	0	0	0	0	
4.5-5.5	0	0	0	0.03	0	0	0	0	0	0	0]
5.5-6.5	0	0	0.03	0	0	0	0	0	0	0	0	(102
6.5-7.5	0	0	0.06	0	0	0	0	0	0	0	0	(10^{-5})
7.5-10	0	0	0	0	0	0	0	0.01	0	0	0	
10-15	0	0	0	0	0	0	0	0	0	0	0]
15-20	0	0	0	0	0	0	0	0	0.01	0	0	
20-25	0	0	0	0	0	0	0	0	0	0	0]
25-30	0	0	0	0	0	0	0	0	0	0.01	0.01	1
overflow	0	0	0	0	0	0	0	0	0	0	0	1

 $M[v_{\tau}^{CC} - v_{\mu}](E',E)$ missing

Oscillation fits

• Fitting programs (i.e. Globes) should take into account:

- Neutrino flux for each neutrino type with errors (normalization + spectrum)
- Total x-section vs energy for each neutrino type with errors
- Detector response matrices with errors
- Uncertainty on matter density