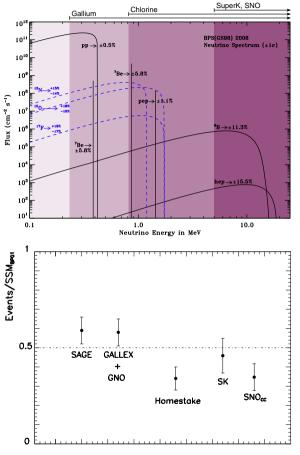
Solar fluxes from neutrino oscillation data

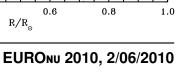
Michele Maltoni

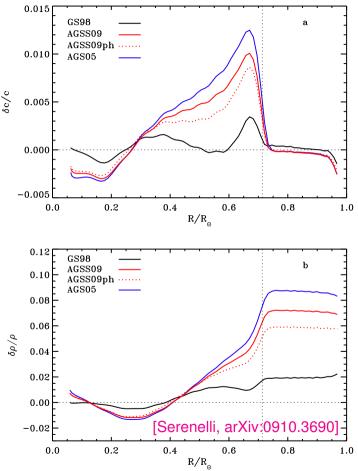
Instituto de Física Teórica UAM/CSIC


EUROnu week in Strasbourg Strasbourg, France – June 2nd, 2010

- I. The new solar problem
- II. Solar neutrino fluxes
- **III. Neutrino oscillation parameters**

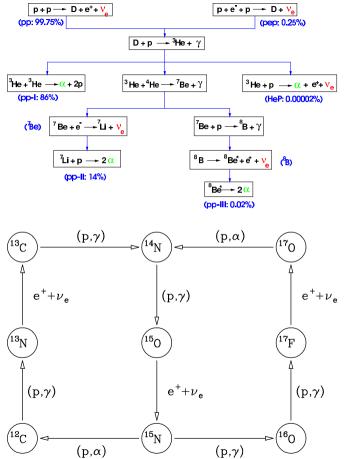
Conclusions


The solar NEUTRINO problem


- Nuclear reactions in the core of the Sun produce electron neutrinos;
- during the last 40 years, a number of underground experiments has measured their flux in different energy windows;
- it is found that ALL the experiments observe a deficit of about 30 60%;
- the deficit is NOT the same for all the experiments, hence the effect is energy dependent.
- it is not possible to reconcile the data with the Standard Solar Model (SSM) by simply readjusting the parameters of the model;
- solution: neutrino $v_e \rightarrow v_{\text{active}}$ oscillations;
- Effect well understood ⇒ <u>PROBLEM SOLVED</u>.

The solar ABUNDANCE problem

- The solar chemical composition is encoded in its surface spectrum;
- however, its extraction requires an accurate modelling of the solar atmosphere;
- two atmospheric models: old-1D (GS98) and new-3D (AGS05, AGSS09);
- the extracted surface composition is then extended to the bulk of the Sun;
- the chemical composition in the radiative zone determines the opacities, which in turn determine the internal solar structure;
- the structure of the solar interior is accurately measured by helioseismology;
- ⇒ new abundances from AGS models are incompatible with helioseismology.



I. The new solar problem

Neutrinos and solar abundances

- Neutrinos are produced in the core of the Sun through two different mechanisms: the pp chain and the CNO cycle;
- both give $4p \rightarrow^4 \text{He} + 2e^+ + 2v_e + \gamma$;
- the solar abundance problem is a discrepancy between the theory of stellar atmospheres and the theory of stellar interiors; neutrinos are not directly involved;
- however, the rate of the different nuclear reactions depend on the chemical composition of the solar core;
- in particular, CNO v's are sensitive to the amount of "metals" (= anything but H & He);
- \Rightarrow solar neutrinos can provide direct information on the metallicity in the solar interior.

Reconstructing the neutrino fluxes

- Strategy: perform a solar model indepenent analysis of both solar and terrestrial neutrino data in the framework of 3v mixing;
- aim: to dertermine both the flavor parameters and all the solar neutrino fluxes with a mimimum set of theoretical priors;
- 11 parameters: θ_{12} , θ_{13} , Δm_{21}^2 and 8 reduced fluxes $f_i = \Phi_i / \Phi_i^{\text{ref}}$;
- imposed physical conditions:
 - fluxes must be positive:
 - the number of nuclear reactions terminating the pp-chain should not exceed the number of nuclear reactions which initiate it: $\Phi_{^7Be} + \Phi_{^8B} \le \Phi_{pp} + \Phi_{pep}$
 - the ¹⁴N(p, γ)¹⁵O reaction must be the slowest process in the main branch of the CNOcycle: $\Phi_{^{15}O} \le \Phi_{^{13}N}$
 - the CNO-II branch must be subdominant:
 - pep & pp have the same nuclear matrix element:

Flux	Φ^{ref}_i [cm $^{-2}$ s $^{-1}$]
рр	5.97×10^{10}
⁷ Be	5.07×10^{9}
рер	1.41×10^{8}
¹³ N	2.88×10^{8}
¹⁵ O	2.15×10^{8}
¹⁷ F	5.82×10^{6}
⁸ B	5.94×10^{6}
hep	7.90×10^{3}

 $\Phi_i \ge 0$

 $\Phi_{17F} \leq \Phi_{15O}$

 $f_{\rm pep}/f_{\rm pp} = 1.008 \pm 0.010$

The luminosity constraint

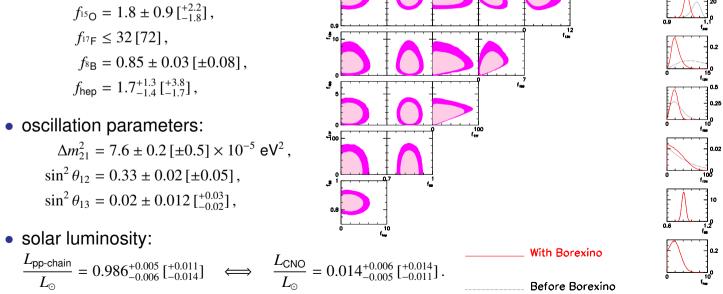
- Apart from neutrinos, nuclear reactions in the solar core also produce energy;
- changing the rate of a given reaction scales the corresponding energy yield and neutrino flux by the same factor;
- the total amount of energy produced by the Sun is well known;
- imposing this as a constraint results in a further condition on the neutrino fluxes:

$$\sum_{i=1}^{8} \alpha_i \Phi_i = \frac{L_{\odot}}{4\pi \,(\mathsf{A}.\mathsf{U}.)^2} = 8.5272 \times 10^{11} \,\mathrm{MeV} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$$

• or, in terms of the reduced fluxes:

$$\sum_{i=1}^{8} \beta_i f_i = 1 \quad \text{with} \quad \beta_i \equiv \frac{\alpha_i \Phi_i^{\text{ref}}}{L_{\odot} / [4\pi \, (\text{A.U.})^2]}$$

 in what follows we will present results both with and without imposing the luminosity constraint.


Flux	α_i [MeV]	eta_i
рр	13.0987	9.171×10^{-1}
⁷ Be	12.6008	7.492×10^{-2}
рер	11.9193	1.971×10^{-3}
¹³ N	3.4577	1.168×10^{-3}
¹⁵ O	21.5706	5.439×10^{-3}
¹⁷ F	2.363	1.613×10^{-5}
⁸ B	6.6305	4.619×10^{-5}
hep	3.7370	3.462×10^{-8}

Results with the luminosity constraint

,

Best-fit fluxes:

 $f_{\rm pp} = 0.990^{+0.010}_{-0.009} \begin{bmatrix} +0.023\\ -0.030 \end{bmatrix},$ $f_{7Be} = 1.00^{+0.10}_{-0.09} \begin{bmatrix} +0.25\\ -0.21 \end{bmatrix}$ $f_{\text{pep}} = 0.998 \pm 0.014 \, [\pm 0.04],$ $f_{^{13}N} = 2.7^{+1.7}_{-1.2} \begin{bmatrix} +5.6\\ -2.4 \end{bmatrix}$ $f_{150} = 1.8 \pm 0.9 \begin{bmatrix} +2.2 \\ -1.8 \end{bmatrix}$ $f_{17F} \leq 32[72],$ $f_{^{8}\mathsf{B}} = 0.85 \pm 0.03 \, [\pm 0.08]$ $f_{\text{hep}} = 1.7^{+1.3}_{-1.4} \begin{bmatrix} +3.8\\ -1.7 \end{bmatrix}$

Probability

Results without the luminosity constraint

Best-fit fluxes:

$$\begin{split} f_{\rm pp} &= 0.98^{+0.16}_{-0.15} \left[{}^{+0.47}_{-0.40} \right], \\ f_{^7\rm Be} &= 1.01^{+0.10}_{-0.09} \left[{}^{+0.27}_{-0.22} \right], \\ f_{\rm pep} &= 0.98^{+0.16}_{-0.15} \left[{}^{+0.47}_{-0.40} \right], \\ f_{^{13}\rm N} &= 2.7^{+1.8}_{-1.3} \left[{}^{+5.7}_{-2.5} \right], \\ f_{^{15}\rm O} &= 1.9 \pm 1.0 \left[{}^{+2.3}_{-1.9} \right], \\ f_{^{17}\rm F} &\leq 34 \left[79 \right], \\ f_{^8\rm B} &= 0.85 \pm 0.03 \left[\pm 0.08 \right] \\ f_{\rm hep} &= 1.7^{+1.3}_{-1.4} \left[{}^{+3.8}_{-1.7} \right], \end{split}$$

•

• solar luminosity:

$$\frac{L_{\text{pp-chain}}}{L_{\odot}} = 0.98^{+0.15}_{-0.14} \, [\pm 0.40] \,,$$
$$\frac{L_{\text{CNO}}}{L_{\odot}} = 0.015^{+0.005}_{-0.007} \, [^{+0.013}_{-0.014}] \,,$$

from which we derive:

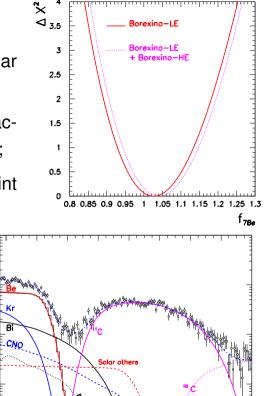
 L_{\odot} (neutrino-inferred) $= 1.00 \pm 0.14 \begin{bmatrix} +0.37\\ -0.34 \end{bmatrix}$. L_{\odot}

- **1**,1 ~ 6 **,** 1. 1 J 10 3 100 fm -¹00 100 ا ھ 10 With Borexino Before Borexino

Michele Maltoni <michele.maltoni@uam.es>

EURONU 2010, 2/06/2010

The Borexino experiment


- Borexino has provided a unique measurement of solar neutrinos at low energy [arXiv:0805.3843];
- however, the official analysis only focuses on the extraction of ⁷Be, and treats CNO neutrinos as "background";
- this is inconsistent with our approch, which aims at a joint determination of **all** the fluxes on the same footing;
- hence, we have performed our own analysis of the Borexino spectrum;
- backgrounds:
 - ¹⁴C is removed by a cut $T_e \ge 365$ keV;
 - -²³⁸U, ²¹⁴Pb are assumed to be known;
 - ⁸⁵Kr, ²¹⁰Bi, ¹¹C, ¹⁰C are left free and fitted;
- our fit is in excellent agreement with the results of the Borexino collaboration.

1600

1800

2000

1200

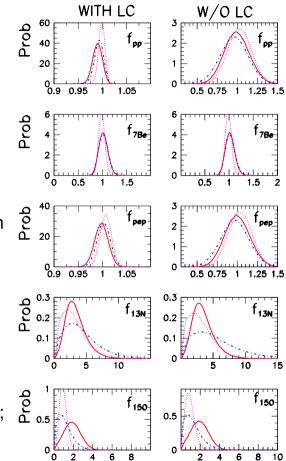
1400

1000

Events/(10 KeV × day × 100 tons) ā, _____

10⁻¹

10


400

600

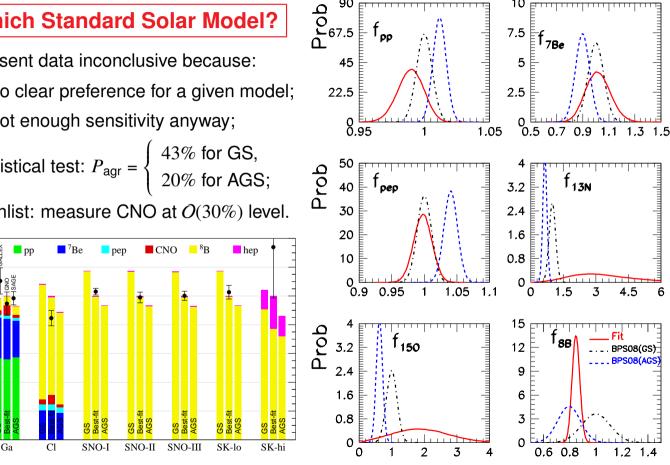
800

The role and potential of Borexino

- Three types of fit:
 - solid: present, full-spectrum;
 - dash-dotted: present, ⁷Be line only;
 - dotted: future (no 11 C, stat $\times 2$, sys / 3);
- use of spectral info irrelevant for ⁷Be;
- CNO improves ⇒ Borexino can see them, even with unknown ²¹⁰Bi background;
- CNO also important for Chlorine and Gallium:
 - Gallium mainly sensitive to ¹³N (lower E_{ν});
 - Chlorine mainly sensitive to ¹⁵O (higher E_{ν});
- Gallium excess \Rightarrow ¹³N always larger than 1;
- Chlorine deficit \Rightarrow ¹⁵O senses tension with Borexino;
- future data will improve fluxes, but not dramatically.

Which Standard Solar Model?

- Present data inconclusive because:
 - no clear preference for a given model;
 - not enough sensitivity anyway;
- 43% for GS, 20% for AGS; statistical test: P_{agr} = {
- wishlist: measure CNO at O(30%) level.


1.4

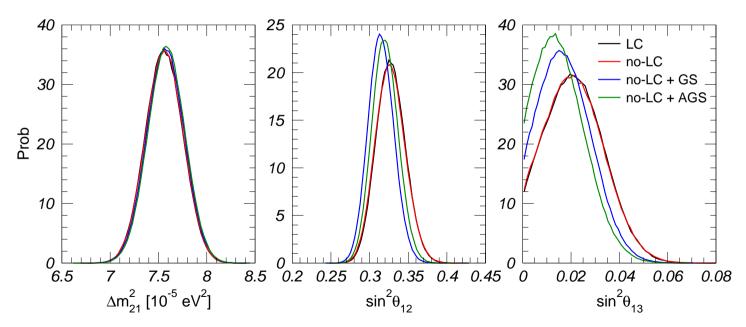
1.2

R / R_{best}

0.4

0.2

90


Michele Maltoni <michele.maltoni@uam.es>

6

10

Connection with the oscillation parameters

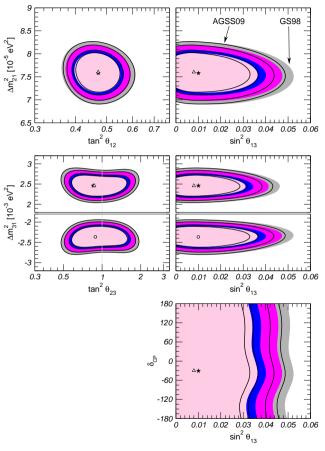
- Imposing the luminosity constraint has no effect on the oscillation parameters;
- Δm_{21}^2 completely dominated by KamLAND \Rightarrow insensitive to the SSM's details;
- conversely, the preferred range of θ_{12} and θ_{13} depends on the SSM.

III. Neutrino oscillation parameters

Neutrino oscillations: where we are

- **Updated** global 6-parameter fit (including δ_{CP}):
 - Solar: CI + Ga + SK-I + SNO-leta (I+II) + <u>SNO-III</u> + BX-low + BX-high;
 - Atmospheric: SK-I + SK-II + <u>SK-III</u>;
 - Reactor: Chooz + KamLAND;
 - Accelerator: K2K + Minos-DIS + Minos-APP;
- BPS09(GS): best-fit and 1σ (3σ): $\theta_{12} = 34.4 \pm 1.0 \begin{pmatrix} +3.2 \\ -2.9 \end{pmatrix}$, $\Delta m_{21}^2 = 7.59 \pm 0.20 \begin{pmatrix} +0.61 \\ -0.69 \end{pmatrix} \times 10^{-5} \text{ eV}^2$, $\theta_{23} = 42.8 \stackrel{+4.7}{_{-2.9}} \begin{pmatrix} +10.7 \\ -7.3 \end{pmatrix}$, $\Delta m_{31}^2 = \begin{cases} -2.36 \pm 0.11 (\pm 0.37) \times 10^{-3} \text{ eV}^2, \\ +2.46 \pm 0.12 (\pm 0.37) \times 10^{-3} \text{ eV}^2, \end{cases}$

 $\theta_{13} = 5.6^{+3.0}_{-2.7} \ (\le 12.5) \ , \qquad \delta_{\rm CP} \in [0, \ 360] \ ;$


• BPS09(AGSS): same as above except:

 $\theta_{12} = 34.5 \pm 1.0 \begin{pmatrix} +3.2 \\ -2.8 \end{pmatrix}, \quad \theta_{13} = 5.1 \begin{smallmatrix} +3.0 \\ -3.3 \end{smallmatrix} (\le 12.0) \ ;$

	Solar model	Sol+Kam	Global
• " $\theta_{13} \neq 0$ ": {	. ,	1.26σ	1.31σ
	BPS09(AGSS)	1.05σ	1.17σ

 \Rightarrow Full details and future: \rightarrow next talk

[Gonzalez-Garcia, MM & Salvado, arXiv:1001.4524 v3]

- We have performed a solar model independent analysis of solar and terrestrial neutrino data in the framework of three neutrino oscillations;
- we have fitted the normalization of the 8 solar neutrino fluxes together with the relevant oscillation parameters;
- main results:
 - the neutrino-inferred luminosity perfectly agrees with the measured one and it is known with a 1σ uncertainty of 14%;
 - the low value of the ⁸B flux at SK and SNO points towards low metallicity models;
 - the measurement of ⁷Be in Borexino favor high metallicity models;
 - altogether there is a slight preference for models with higher metallicities;
- the largest difference between the models lies on the CNO fluxes that give predictions which differ by about 30%. This is the level of precision required to achieve a statistically meaningful discrimination between the models.
- ⇒ [Gonzalez-Garcia, MM & Salvado, JHEP 05 (2010) 072, arXiv:0910.4584] [Gonzalez-Garcia, MM & Salvado, JHEP 04 (2010) 056, arXiv:1001.4524]

14