

EURONU Annual meeting, Strasbourg, 2-4/6/10

Status of the Production Ring for Beta Beams Studies

E. Benedetto

(CERN & NTU Athens)

Acknowledgements: D. Neuffer (FNAL), G. Arduini, J. Barranco, C. Bracco, P. Chiggiato, R. Garoby, B. Holzer, V. Previtali, V. Vlauchoudis, E. Wildner (CERN) O. Boine-Frankenheim (GSI), Y. Mori (KURRI), M. Schaumann (RWTH Aachen University), ...

Outline

- Introduction
 - Beta-beams and the Production Ring idea
 - Ionization cooling
 - Preliminary lattice design
- Tracking simulations
- Technological challenges
- Next steps

Please refer to my presentation at the WP4 Meeting in Paris (19/2/10): https://espace.cern.ch/betanu/MeetingsWP4/WP4Meeting4/EB_wp4Paris190210.pdf

β beams

• Aim: production of electron (anti-)neutrino beams from the β decay of radioactive ions circulating in a storage ring

Production Ring

C. Rubbia, A. Ferrari, Y. Kadi, V. Vlachoudis, Beam cooling with ionization losses, NIM A 568 (2006) 475-487

 \rightarrow see also **Y.Mori, NIM A 562 (2006) 591**, proton FFAG with internal Be target for neutron production (but no need of (dp/p) cooling)

- Enhance production ⁸Li/⁸B (~10¹⁴/s) by multi passages trough a thin target
- Compact ring & internal target
- Inverse kinematics: Li beam @ ~25MeV and D or ³He supersonic gas-jet target
- Multi Coulomb scattering + energy straggling @ target
- Ionization cooling

Ionization cooling

• Energy losses (dE/ds) in the target material (Bethe-Bloch)

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

- Only longitudinal component recovered in RF cavities
 → Transverse emittance shrinks
- Cooling in 6D
 - (dE/ds) ~ $\beta^{\text{-2}}$ smaller at higher energies \rightarrow cooling not effective in longitudinal
 - need coupling between transverse and longitudinal:
 - \rightarrow Dispersion & wedge-shaped target

Faster ions will travel on an outer orbit and see a larger target thickness \rightarrow they will get more (dE/ds)

Target: width @ closed orbit = 5 cm $t = 0.289 \text{ mg/cm}^2$ If angle = $20^\circ \rightarrow D_x > 24 \text{ cm}$

The proposed lattice

2009-128

- 25 MeV ⁷Li (βρ ~0.6)
- C = 12m
- 5 quadrupole families
- Normal-conducting magnets
- 2-fold mirror symmetry
 - **RF** cavity \rightarrow in region D_x=0 m
 - Target $\rightarrow D_x \sim 50 \text{cm}$

	Particle		⁷ Li
	Energy	E_c	25 MeV
$ = \frac{\text{dipole}}{8} 6.0 \frac{s}{1.52.09} $	Relativistic gamma	γ_r	1.00383
Target dispr	Beam rigidity	B ho	0.636 T m
	Transition γ	γ_t	3.58
	Tune	$Q_{x,y}$	2.58, 1.63
$\hat{\vec{z}}$ 3.5 - $\hat{\vec{z}}$ 3.0 -	Natural chromaticity	$Q'_{x,y}$	-3.67, -3.58
	β @ target	$\beta^*_{x,y}$	2.62 m, 0.35 m
	Dispersion @ target	$D_{x,y}^*$	0.523 m, 0 m
	Target thickness	t_0	0.27 mg/cm^2
		n_t	10^{19} atoms/cm ²
0.0 $1.$ $2.$ $3.$ $4.$ $5.$ $6.$ $7.$ $8.$ $9.$ $10.$ $11.$ $12.$ $s(m)$	Energy losses @ target	E_{BB}	$\sim 0.30~{\rm MeV}$

Tracking simulations

- SixTrack (collimation version)
 - Developed at CERN for dynamic aperture tracking
 - Fully 6D, symplectic, reads lattice form MADX output (multipoles ok!)
 - Extended for LHC collimation & beam losses
 - Tracking large ensemble of halo particle
 - Interaction w. collimators
- Adapted to the Production Ring needs
 - Target implemented as a special collimator element:
 - Random transverse kick $\Delta x'$, $\Delta y'$ due to Multiple Coulomb scattering
 - (Gaussian distribution, $<\sigma_c^2>$)
 - Random energy losses ΔE :
 - mean value \rightarrow Bethe-Bloch
 - energy straggling \rightarrow gaussian distribution assumed
 - Rms emittances & Intensity evolution diagnostics
 - Sixtrack is for protons \rightarrow need a proton equivalent ring (same Bp, same $\Delta p/p$ recovered in RF cavity)

Tracking simulations: zero wedge angle

Tracking simulations: choice of the angle

Tracking simulations: wedge-angle $=6^{\circ}$

Technological challenges

- \rightarrow Please refer also to my presentation at WP4 meeting in Paris
- Supersonic gas jet target
 - Wedge shape (larger thickness for larger $\Delta p/p$)

– Parameters					
from C.Rubbia's:	from C.Rubbia's: Thickness	(mg/ cm²)	0.27		
		(atoms/cm ²)	→ 5 10 ¹⁹		
	Diameter	(cm)	5		
	Density	(mg/cm ³)	~0.06		
existing cluster-jet targets reach up to 10^{15} atoms/cm ² \rightarrow Factor 10 ⁴ missing	Pressure	(Torr)	250		
	Mach n.	-	4		
	Nozzle throat	(mm)	3.26		
	P_plenum	(atm)	~3.5		
	Length	(cm)	~30		

Technological challenges

- Possible solutions:
 - Increase injected beam intensity → already at limit of stable ⁷Li ion source (~160 A required from the LINAC)
 - Run with poor vacuum (as long as the residual gas is thin compared to the target) → NO!, causes problems to the RF cavity (capacitive-loaded cavity)
 - Lower target density = less ion productions, but also = better lifetime & higher intensity circulating → more detailed studies are needed, another regime since Multiple Coulomb Scattering not valid any longer... → but gaining a factor 10⁴, hmm...
- Other possibility: use D or ³He beam & Lithium target (solid, waterfall, droplets,...?)
 - set-up lattice for cooling
 - study feasibility (power dissipation on target, collection,...)

Conclusions

- Tracking tools for i-cooling studies are now fully in place and benchmarked with analytical considerations
- Existing gas-jet targets cannot reach the densities proposed in [C.Rubbia, *et. al*] in a vacuum environment

Next Steps:

- Conclude AND document work on ring with gas-jet target
 - TO DO: implications of lower density target
 - TO DO: lattice optimization for i-cooling (i.e. reduce β^*)
- Study alternative solution: D(or ³He) beam + Li target: (technological feasibility and i-cooling)
- Beam-target interaction:
 - Validity Bethe-Bloch & MultipleCoulombScattering for low densities
 - Production cross-section (& collection efficiency)

Back-up slides

Cooling rates and equilibrium emittance (1)

$$\frac{d\varepsilon_N}{ds} = -\frac{1}{p}\frac{dp}{ds}\varepsilon + \frac{\beta\gamma \ \beta_\perp}{2}\frac{d\left\langle\theta_c^2\right\rangle}{ds}$$

$$\tau \sim \left(\int \frac{1}{p} \frac{dp}{ds} ds\right)^{-1} \approx 169 turns$$

Damping time

$$\left\{ \begin{array}{ll} \epsilon_{x} \sim 90 & m \ \epsilon_{y} \sim 11 & m \end{array} \right.$$

Cooling rates and equilibrium emittance (2)

If now we introduce Dispersion (and a triangular target shape):

$$\frac{\partial}{\partial E} \left(\frac{dE}{ds} \right) = \frac{\partial}{\partial E} \left(\frac{dE}{ds} \right) \Big|_{\Delta x = 0} + \underbrace{\left(\frac{dE}{ds} \right) \frac{1}{\rho_0} \frac{d\rho}{dx} \frac{D}{\beta cp}}_{\text{at a different orbit } \Delta x = D \Delta p/p}$$

Cooling rates and equilibrium emittance (3)

If now we introduce Dispersion (and a triangular target shape):..

Cooling can be transferred from transverse to longitudinal thanks to Dispersion + triangular target

can also introduce coupling x-y

Since sum of the three partition number is always the same, is computed for $D_x=0$:

$$\sum J_i = 1 + 1 + \frac{\partial}{\partial E} \left(\frac{dE}{ds} \right) \Big|_{\Delta x = 0} \begin{cases} 0.4 & \text{for } {}^6\text{Li} \\ 0.01 & \text{for } {}^7\text{Li} \end{cases}$$

Due to Bethe-Bloch shape, NO possibility to effectively cool \rightarrow but only to keep a constant emittance or not to heat it "too much"