# Search for long lived decays of new massive particles in the CMS experiment at the LHC

#### Paul Vaucelle

Département de Recherche Subatomique CMS Université de Strasbourg 23 Rue du Loess, 67200 Strasbourg France

#### June 21, 2022



# Internship's goals

#### Search for Displaced Tracks



- Characterize the Signal
- Multivariate Analysis
- Select Displaced Tracks

#### Reconstruct the vertices of the decay of the long-lived particles



- Apply Kalman Vertex Filter
- Evaluate Resolution and Reconstruction efficiency

- 1 Theoretical & Instrumental Contexts
  - SuperSymmetry
  - RPV-MSSM model
  - Flight distance of the neutralino
  - CMS Tracker

2 Selection method of the tracks coming from the signal

- 3 Multivariate Analysis Implementation
- 4 Reconstruction and selection of displaced Vertices
- 5 Conclusion
- 6 Back-up

# SuperSymmetry



## **R-Parity Violation Minimal SUSY Model**

$$P_R = (-1)^{3(B-L)+2s}$$
 where B and L are respectively the Baryonic and Leptonic  
numbers, s being the spin of the particle  
 $P_R = +1$  for SM particles  
 $P_R = -1$  for SUSY particles

#### **R-Parity Violation**

- Non-conservation of the leptonic and/or the baryonic number
- Decay of the LSP into SUSY and/or SM Particles
- Displaced tracks can appear in the tracker
- Displacement is a function of the lifetime of the LSP

## RPV process studied

- p-p interaction : Neutralino decay : •  $\overline{q}$  $\mu$  $Z/\gamma$ b  $\mu^{\neg}$ q  $\tilde{\chi}_1^0$ q" q"' ||  $I\nu_I$ •  $Br(\tilde{\mu} \to \mu \chi_1^0) = 100\%$  6 to 10 jets Two neutralinos with a •  $\lambda_{312}^{''}$  RPV coupling long lifetime
  - Trigger : Pair of Muons

- displaced top + stop->quarks
- Neutralino is a Majorana particle

## Parameters of the flight distance of the neutralino



- $\lambda^{''} = 10^{-3}$
- $\sigma$  :  ${\sim}1$  fb (10^3 lower than Higgs production)
- $\sim$ 100 events in the Run2 (2015-2018)

## Monte-Carlo Samples

4 Monte-Carlo samples of 10 000 events were generated, simulated and reconstructed for 4 different distances of flight:

| $\tilde{\beta \gamma c \tau}(cm)$ | Mass $\tilde{\mu}$ (GeV) | Mass $\tilde{\chi}_1^0$ (GeV) | Mass $\tilde{t}$ (GeV) | Coupling $\lambda^{''}$ |
|-----------------------------------|--------------------------|-------------------------------|------------------------|-------------------------|
| 10                                | 250                      | 200                           | 7200                   | 10^1                    |
| 30                                | 300                      | 250                           | 10300                  | 10 <sup>-2</sup>        |
| 50                                | 275                      | 225                           | 2350                   | 10 <sup>-3</sup>        |
| 70                                | 250                      | 200                           | 3700                   | 10 <sup>-2</sup>        |

Table: Masses of the SUSY particles for each distance of flight as well as for the coupling  $\lambda^{''}$ 

- Compromise between the cross sections, masses of the SUSY particles and the coupling
- $\bullet\,$  Decay in the tracker volume of  ${\sim}1.1m$  radius in the transverse plane (min. 3 cm)

## **CMS** Tracker



Search for Displaced Tracks

#### Theoretical & Instrumental Contexts

Selection method of the tracks coming from the signal

- Decision Tree introduction
- Signal/Background Comparison
- ROC  $\beta\gamma c\tau$  50 cm

3 Multivariate Analysis Implementation

4 Reconstruction and selection of displaced Vertices

5 Conclusion



## Pre-selection of the tracks

10<sup>6</sup>

Before pre-selection After pre-selection 10<sup>6</sup> 11 P // 11 P Vbr of tracks notFromLLP isFromLLP



 $p_t > 1$  GeV AND  $\chi^2/dof < 5$  AND  $Sig_{dxy} > 5$ = 90% Background reduction &  $\sim$ 1% Signal loss Signal -> All the displaced tracks & Bkg -> the other tracks <S> $\sim$ 13 & <B> $\sim$ 27 tracks per event

## **Boosted Decision Tree**

#### Goal

• Select the displaced tracks coming from the neutralino decay

#### Classifier : Binary Tree



- Selection of the most discriminant variables between Signal and Background
- Cut to optimise  $\frac{S}{S+B}$
- 1 tree => 1 forest : Multiple trees
- Stabilize BDT response with respect to fluctuations
- Increase the performance

## Variable List



- For a given track with first hit (x1, y1, z1), count the **number of other tracks with their first hit at less than** 10 cm (n\_d10), 20 cm (n\_d20), ... or within 10-20 cm (n\_10d20), 20-30 cm (n\_20d30),...
- Impact Parameters :  $\rho_{dxy}$ ,  $\sigma_{dxy}$ ,  $\rho_{dz}$ ,  $\sigma_{dz}$ ,  $Sig_{dxy} = \frac{\rho_{dx}}{\sigma_{dy}}$ ,  $Sig_{dz} = \frac{\rho_{dz}}{\sigma_{dz}}$ ,  $Sig_{dd}$
- Number of Hits in each region : n<sub>TIB</sub>, n<sub>TOB</sub>, n<sub>PixBar</sub>, n<sub>TEC</sub>
- Others : algo,  $p_t$ ,  $\eta$ ,  $\chi^2/dof$ ,  $n_{hits}$ , isinjet<sub>AK4PF</sub>

# For each variable, a comparison between the Signal and the Bkg is made for each sample:

with S=89580 and B=173677, <S>~13 & <B>~27 tracks per event



On the left, Signal/Bkg comparison for  $Sig_{dxy}$  for the sample  $\beta\gamma c\tau 50$ . On the right, Signal comparison between the 4 samples for  $Sig_{dxy}$ . Receiver Operating Characteristic (ROC) curve : Evaluate the discriminating power of the variables for the  $\beta\gamma c\tau$  50 cm sample

Signal Efficiency: % of Signal Tracks selected Bkg Efficiency : % of Bkg Tracks selected ROC Integral : Area Under Curve (AUC) Performance



• For a given track with first hit (x1, y1, z1), count the number of other tracks with their first hit at less than 10 cm (n\_d10), 20 cm (n\_d20),

• 
$$Sig_{dxy} = rac{
ho_{xy}}{\sigma_{xy}}$$

• 
$$Sig_{dd} = \sqrt{Sig_{dxy}^2 + Sig_{dz}^2}$$

#### 1) Theoretical & Instrumental Contexts

Selection method of the tracks coming from the signal

#### Multivariate Analysis Implementation

- Selection of the Variables used for the BDT
- Control Plots
- Validity of Training

4 Reconstruction and selection of displaced Vertices

## 5 Conclusion

## 6 Back-up

## Lists of variables

### Conditions on the 27 variables:

- Remove variables causing information redundancy e.g : n\_10d20 is the combination n\_d10 and n\_d20, Sig<sub>dxy</sub> is the combination of ρ<sub>dxy</sub> and σ<sub>dxy</sub> (27 -> 16 Variables )
- Variables a priori dependant on the distance of flight of the neutralino are removed to limit the dependence on the Training sample (16 -> 7 Variables )
- algo : tracking iteration used
- isinjet : if the track is in a jet or not

#### List of variables used for the BDT

 $\eta \quad \chi^2/dof \quad n\_d10 \quad algo \quad Sig_{dxy} \quad p_t \quad isinjet$ 

### ROC results:

- ROC curve (Background Rejection vs. Signal Efficiency)
- Training and Test distributions with BDT cut



# Validity of Training

## Validity of Training

- Look for any dependence on the Training sample for the AUC Performance
- Determine if one Training sample is better than the other to describe any distance of flight of the neutralino
- Check if any information is missed in the removed variables

| Test/Training                                              | $\beta \tilde{\gamma c} \tau \ 10$ | $\beta \tilde{\gamma} c \tau$ 30 | $\beta \tilde{\gamma} c \tau$ 50 | $\beta \tilde{\gamma} c \tau$ 70 | ]  |
|------------------------------------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------|----|
| $egin{array}{c} \widetilde{\gamma c 	au} \ 10 \end{array}$ | 0.86                               | 0.85                             | 0.85                             | 0.85                             | ], |
| $eta \widetilde{\gamma c 	au}$ 30                          | 0.87                               | 0.87                             | 0.87                             | 0.87                             |    |
| $eta 	ilde{\gamma c} 	au$ 50                               | 0.88                               | 0.88                             | 0.89                             | 0.88                             |    |
| $eta 	ilde{\gamma c} 	au$ 70                               | 0.88                               | 0.89                             | 0.89                             | 0.89                             |    |
| Average (7V)                                               | 0.87                               | 0.87                             | 0.87                             | 0.87                             |    |

Table: 7V are the 7 variables mentioned earlier

## Validity of training with respect to test samples

| Test/Training                     | $\beta \tilde{\gamma} c \tau \ 10$ | $\beta \tilde{\gamma} c \tau$ 30 | $\beta \tilde{\gamma} c \tau$ 50 | $\beta \tilde{\gamma} c \tau$ 70 |
|-----------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------|
| $\beta \tilde{\gamma c \tau}$ 10  | 0.86                               | 0.85                             | 0.85                             | 0.85                             |
| $eta 	ilde{\gamma c} 	au$ 30      | 0.87                               | 0.87                             | 0.88                             | 0.87                             |
| $eta \widetilde{\gamma c 	au}$ 50 | 0.88                               | 0.89                             | 0.89                             | 0.89                             |
| $eta \tilde{\gamma c 	au}$ 70     | 0.88                               | 0.89                             | 0.89                             | 0.89                             |
| Average (n <sub>hit</sub> )       | 0.87                               | 0.87                             | 0.88                             | 0.88                             |
| Average (all)                     | 0.87                               | 0.87                             | 0.88                             | 0.88                             |

Table:  $7V + n_{hits}$  are the 7 variables + the number of hits in the tracker **all** are the 7 variables + all the variables supposed to be dependent on the distance of flight

### Validity of training

- No dependence on the Training sample (distance of flight of the neutralino)
- All samples could be used for the final BDT
- Few information added by previously removed variables
- Final Training Sample :  $\beta \gamma c \tau$  50 cm

- 1) Theoretical & Instrumental Contexts
- 2 Selection method of the tracks coming from the signal
- 3 Multivariate Analysis Implementation
- Reconstruction and selection of displaced Vertices
  - Kalman Vertex Filter
  - Efficiency and Resolution
  - Reconstruction and Selection of displaced Vertices
- 5 Conclusion



## Kalman Vertex Filter

#### Kalman Vertex filtering steps

- Vertex Finding with Pure Signal
  - At least 2 tracks
  - Convergence criteria
    - Nbr. of iterations (can be number of tracks or lower)
    - ② Distance in the transverse plane between two iterations
- Vertex Fitting
  - Obtain best estimation of the position of the vertex

# Reconstruction of Displaced Vertices using only Signal Tracks to test the Reconstruction method

## Efficiency and Resolution of the reconstructed vertices

For the sample of  $\beta \gamma c \tau$  of 50 cm, for 6694 events filtered:

- Without using the BDT : 2\*5153 reconstructed vertices (77% efficiency)
- Using the BDT : 2\*4654 reconstructed vertices (70% efficiency)

Adding a restriction on the  $\chi^2$  ( $\chi^2 < 5$ ) on the reconstructed vertices

- Without using the BDT : 2\*2796 reconstructed vertices (42% efficiency)
- Using the BDT : 2\*2955 reconstructed vertices (44% efficiency)

The resolution obtained with the BDT in the transverse plane is at the order of 0.14 mm

The resolution obtained with the BDT in the z axis is at the order of 0.17 mm

## Reconstruction and Selection of displaced Vertices

Requirement :  $\chi^2 < 5$  for the generated and reconstructed vertices (not optimised)



Figure: Distribution of the difference in cm between the generated vertex and the reconstructed vertex along the x axis (on the left) and along the z axis (on the right)

Paul Vaucelle (Université de Strasbourg)

- **1** Theoretical & Instrumental Contexts
- 2 Selection method of the tracks coming from the signal
- 3 Multivariate Analysis Implementation
  - 4 Reconstruction and selection of displaced Vertices

### 6 Conclusion

#### 6 Back-up



## For the BDT :

• Choice of training sample does not matter

For the Reconstruction of Secondary Vertices:

- $\textcircled{\ } 44\% \text{ vertex reconstruction efficiency with a good resolution}$
- Still need optimisation on the tracks used to build the vertices Future planned development:

Add Background tracks to the vertex reconstruction Test the vertex reconstruction on  $\Lambda$  baryons and  $K^0$  mesons Apply the track selection an vertex reconstruction to the Data of Run2 Possibility to use a neural network (instead of a BDT) for the track selection

### Thanks !!

- **1** Theoretical & Instrumental Contexts
- 2 Selection method of the tracks coming from the signal
- 3 Multivariate Analysis Implementation
  - 4 Reconstruction and selection of displaced Vertices
- 5 Conclusion
- 6 Back-up



### Back-up

Paul Vaucelle (Université de Strasbourg) Search for long lived decays of new massive particles ir

#### BDT parameters used:

dataloader -> PrepareTrainingAndTestTree(mycuts, mycutb, "nTrain\_Signal = 10000 : nTrain\_Background = 10000 : SplitMode = Random : NormMode = NumEvents :!V"); factory -> BookMethod(dataloader, TMVA :: Types :: kBDT, "BDTG", "!H :!V : NTrees = 1000 : MinNodeSize = 2.5% : MaxDepth = 3 : BoostType = Grad : UseBaggedBoost = True : GradBaggingFraction = 0.6 : Shrinkage = 0.1 : SeparationType = Ginilndex : nCuts = 20 : UseYesNoLeaf = True : UseRandomisedTrees = False : DoBoostMonitor = True");

- mycuts, mycutsb : Possibilty to add cuts inside the TMVA (not done in our analysis)  $abs(eta) \leq 1.5$ 

- The number of Test events can also be given
- BDTG: "G" stands for Gradient.
- NTrees: Number of trees

- *MinNodeSize*, *GradBraggingFraction*, *Shrinkage*, *nCuts*, *SeparationType*, *UseYesNoLeaf*, *UseRandomisedTrees*, *DoBoostMonitor*: Good default value.

- *MaxDepth*: Keep it between 3 and 5 (according to TMVA guide user)

## Cross section region



## Impact parameters

#### Impact parameters definition :



- Extrapolation of the track and projection in the transverse plane
- d<sub>xy</sub> is defined as the distance between the nearest point of the extrapolated track from the interaction vertex
- $d_z$  is the distance along the beam axis for the given  $d_{xy}$

Paul Vaucelle (Université de Strasbourg) Search for long lived decays of new massive particles ir

June 21, 2022

32 / 68

## **Filters**

### ZMu filter :

- (1) Estimate the efficiency of reconstruction for muons from a Z boson
- (2) Calibrate the reconstruction of muons using real data

| Tag muon                                   | Probe muon                                                                  |  |  |  |  |
|--------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|
| • Muon from reconstructed muons collection | • Track from general Track collection<br>(has to be a muon in our analysis) |  |  |  |  |
| • $p_t > 28$ GeV                           | • $p_t > 10$ GeV                                                            |  |  |  |  |
| • $ \eta  < 2.4$                           | $ullet \  \eta  < 2.4$                                                      |  |  |  |  |
|                                            | • Opposite charge from the tag muon                                         |  |  |  |  |
| + Invariant Mass $>$ 60 GeV                |                                                                             |  |  |  |  |

### $H_T$ filter on jets

 $H_T = \sum_{iets} p_t$  with  $H_T > 180$  GeV being required

 ${\sim}65\%$  of the initial events are selected

Classification of the variables according to their ROC integral (AUC Performance)

| Parameter                | bgctau10 | Parameter                | bgctau30 | bgctau50 | bgctau70 |
|--------------------------|----------|--------------------------|----------|----------|----------|
| n_d10                    | 0.227    | n_d10                    | 0.239    | 0.236    | 0.249    |
| Sig <sub>dd</sub>        | 0.263    | Sig <sub>dxy</sub>       | 0.261    | 0.252    | 0.248    |
| n <sub>PixBar</sub>      | 0.271    | Sig <sub>dd</sub>        | 0.263    | 0.276    | 0.292    |
| n_d20                    | 0.277    | n_d20                    | 0.293    | 0.295    | 0.306    |
| Sig <sub>dz</sub>        | 0.295    | n <sub>TIB</sub>         | 0.308    | 0.322    | 0.332    |
| n <sub>Pix</sub>         | 0.312    | isinjet <sub>AK4PF</sub> | 0.309    | 0.296    | 0.297    |
| n <sub>Pix</sub>         | 0.312    | pt                       | 0.317    | 0.306    | 0.310    |
| n_d30                    | 0.312    | n_d30                    | 0.325    | 0.329    | 0.336    |
| Sig <sub>dxy</sub>       | 0.318    | Sig <sub>dz</sub>        | 0.337    | 0.340    | 0.360    |
| n <sub>TIB</sub>         | 0.323    | n <sub>TOB</sub>         | 0.346    | 0.346    | 0.351    |
| isinjet <sub>AK4PF</sub> | 0.342    | n_d40                    | 0.352    | 0.356    | 0.360    |
| n <sub>hit</sub>         | 0.346    | n <sub>PixBar</sub>      | 0.358    | 0.397    | 0.419    |

#### From the list above:

- A dozen of the variables in the list are *supposed* to be correlated with the flight distance of the LLP (i.e: of the sample)
- No correlation are taken into account : information redundancy is expected for the BDT

# List of variables for which the sample $\beta \gamma c \tau 10$ is different from the other:

## Signal

- 3D distance between first hits (cm) (n\_d10, n\_d20,..)
- $\rho_{dd}$
- *ρ*<sub>dxy</sub>
- $\rho_{dz}$
- pix
- $r1_{\eta < 1.5}$
- $z1_{\eta>1.5}$

## Background

- 3D distance between first hits (cm) (n\_d10, n\_d20,..)
- $r1_{\eta < 1.5}$
- $z1_{\eta>1.5}$

## Overtraining example

- Less events in the Training sample (10k->3k)
- $\bullet$  Increase the depth of the tree (3->10)



#### others :



# ROC as a function of $\eta$ for 9 variables



## Table Performances AUC pour Training 10 et 30

| Test/Training |                                              | bgctau10 (7V)                    | bgctau10 (nhits                 | s) bgctau10 (all)                |
|---------------|----------------------------------------------|----------------------------------|---------------------------------|----------------------------------|
| bgctau10      |                                              | 0.856                            | 0.859                           | 0.859                            |
| bgctau30      |                                              | 0.866                            | 0.871                           | 0.869                            |
| b             | gctau50                                      | 0.876                            | 0.876 0.882                     |                                  |
| b             | gctau70                                      | 0.876                            | 0.883                           | 0.881                            |
| Average       |                                              | 0.8685                           | 0.87375                         | 0.8725                           |
|               | Х                                            | bgctau30 (7V)                    | $bgctau30$ ( $n_{hit}$ )        | bgctau30 (all)                   |
|               |                                              |                                  | 0                               |                                  |
|               | bgctau10                                     | 0.846                            | 0.85                            | 0.849                            |
|               | bgctau10<br>bgctau30                         | 0.846<br>0.872                   | 0.85<br>0.873                   | 0.849<br>0.874                   |
|               | bgctau10<br>bgctau30<br>bgctau50             | 0.846<br>0.872<br>0.883          | 0.85<br>0.873<br>0.885          | 0.849<br>0.874<br>0.886          |
|               | bgctau10<br>bgctau30<br>bgctau50<br>bgctau70 | 0.846<br>0.872<br>0.883<br>0.885 | 0.85<br>0.873<br>0.885<br>0.886 | 0.849<br>0.874<br>0.886<br>0.888 |

## AUC Performances for Training samples 50 and 70

|                | Х        | bgctau50 (7V) | bgctau50 (n <sub>hit</sub> )       | b  | gctau50 (all) |     |
|----------------|----------|---------------|------------------------------------|----|---------------|-----|
|                | bgctau10 | 0.847         | 0.853                              | 0. | .851          |     |
|                | bgctau30 | 0.872         | 0.876                              | 0  | .875          |     |
|                | bgctau50 | 0.887         | 0.889                              | 0  | .89           |     |
|                | bgctau70 | 0.888         | 0.89                               | 0  | .89           |     |
|                | Average  | 0.8735        | 0.877                              | 0  | .8765         |     |
|                | Х        | bgctau70 (7V) | bgctau70 (n <sub>hit</sub> )       | b  | gctau70 (all) |     |
|                | bgctau10 | 0.845         | 0.852                              | 0. | .851          |     |
|                | bgctau30 | 0.869         | 0.874                              | 0  | .874          |     |
|                | bgctau50 | 0.884         | 0.887                              | 0  | .888          |     |
|                | bgctau70 | 0.89          | 0.892                              | 0  | .894          |     |
|                | Average  | 0.872         | 0.87625                            | 0  | .87675        |     |
| Х              |          | bgctauX0 (7V  | ) bgctauX0 ( <i>n<sub>hi</sub></i> | t) | bgctauX0 (a   | II) |
| Global average |          | e 0.871375    | 0.875125                           |    | 0.875         |     |

## Variables dépendantes de la distance de vol



#### Paul Vaucelle (Université de Strasbourg)

Search for long lived decays of new massive particles ir

## Variables dépendantes de la distance de vol



## Variables dépendantes de la distance de vol



#### n<sub>PixBar</sub> Signal and Bkg

Paul Vaucelle (Université de Strasbourg) Search for long lived decays of new massive particles ir

## Variables dépendantes de la distance de vol



## Variables dépendantes de la distance de vol



## Variables dépendantes de la distance de vol



Paul Vaucelle (Université de Strasbourg) Search for long lived decays of new massive particles ir

## Variables dépendantes de la distance de vol



## Variables dépendantes de la distance de vol



## n<sub>TOB</sub> Signal and Bkg

Paul Vaucelle (Université de Strasbourg) Search for long lived decays of new massive particles ir

### $\beta\gamma c\tau$ 50 : 1000 Arbres, 10k Training Signal events, 10k Training Bkg events



## Overtraining



• Training and Test samples are similar : small ovetraining https://root-forum.cern.ch/t/kolmogorov-smirnov-test-values/32868/3

## Correlation Matrices between the 8 final variables



#### Paul Vaucelle (Université de Strasbourg) Search for long lived decays of new massive particles ir

| Paramètre                | bgctau10 | Paramètre         | bgctau30 | Paramètre           | bgctau50 | Paramètre         | bgctau70 |
|--------------------------|----------|-------------------|----------|---------------------|----------|-------------------|----------|
| n_d10                    | 0.227    | n_d10             | 0.239    | $Sig_{dd}$          | 0.276    | $Sig_{dd}$        | 0.292    |
| $Sig_{dd}$               | 0.263    | $Sig_{dxy}$       | 0.261    | n_d10               | 0.236    | $Sig_{dxy}$       | 0.248    |
| $n_{PixBar}$             | 0.271    | $Sig_{dd}$        | 0.263    | $Sig_{dxy}$         | 0.252    | n_d10             | 0.249    |
| n_d20                    | 0.277    | n_d20             | 0.293    | n_d20               | 0.295    | isinjet           | 0.297    |
| $Sig_{dz}$               | 0.295    | $n_{TIB}$         | 0.308    | isinjet             | 0.296    | n_d20             | 0.306    |
| $n_{Pix}$                | 0.312    | isinjet           | 0.309    | $p_t$               | 0.306    | $p_t$             | 0.310    |
| $n_{Pix}$                | 0.312    | $p_t$             | 0.317    | $n_{TIB}$           | 0.322    | $n_{TIB}$         | 0.332    |
| n_d30                    | 0.312    | n_d30             | 0.325    | $Sig_{dz}$          | 0.340    | $n_{TOB}$         | 0.351    |
| $Sig_{dxy}$              | 0.318    | $Sig_{dz}$        | 0.337    | n_d30               | 0.329    | n_d30             | 0.336    |
| $n_{TIB}$                | 0.323    | $n_{TOB}$         | 0.346    | $n_{TOB}$           | 0.346    | $Sig_{dz}$        | 0.360    |
| isinjet                  | 0.342    | n_d40             | 0.352    | n_d40               | 0.356    | n_d40             | 0.360    |
| nhit                     | 0.346    | $n_{PixBar}$      | 0.358    | n <sub>hit</sub>    | 0.373    | $n_{hit}$         | 0.380    |
| $p_t$                    | 0.348    | $n_{hit}$         | 0.361    | n <sub>Strip</sub>  | 0.393    | nStrip            | 0.394    |
| n_d40                    | 0.350    | $n_{Strip}$       | 0.392    | n <sub>PixBar</sub> | 0.397    | $n_{PixBar}$      | 0.419    |
| n_10d20                  | 0.379    | n_10d20           | 0.397    | n_10d20             | 0.417    | $\rho_{dxy}$      | 0.422    |
| $n_{TOB}$                | 0.385    | $n_{Pix}$         | 0.410    | $\rho_{dz}$         | 0.428    | $\rho_{dz}$       | 0.422    |
| n <sub>Strip</sub>       | 0.412    | $n_{Pix}$         | 0.410    | nPix                | 0.446    | n_10d20           | 0.422    |
| n_20d30                  | 0.464    | n_20d30           | 0.456    | $n_{Pix}$           | 0.446    | $\rho_{dd}$       | 0.459    |
| n_30d40                  | 0.508    | $\rho_{dz}$       | 0.462    | $\rho_{dxy}$        | 0.446    | n_20d30           | 0.461    |
| η                        | 0.514    | $\rho_{dxy}$      | 0.471    | n_20d30             | 0.462    | $n_{Pix}$         | 0.467    |
| $n_{TEndC}$              | 0.521    | η                 | 0.511    | $\rho_{dd}$         | 0.480    | $n_{Pix}$         | 0.467    |
| chi2                     | 0.524    | n_30d40           | 0.515    | n_30d40             | 0.509    | $\eta$            | 0.506    |
| $n_{TID}$                | 0.525    | $\rho_{dd}$       | 0.516    | η                   | 0.512    | n_30d40           | 0.508    |
| $\rho_{dz}$              | 0.553    | chi2              | 0.525    | chi2                | 0.524    | r1                | 0.527    |
| $\rho_{dxy}$             | 0.575    | $n_{TID}$         | 0.544    | $n_{TID}$           | 0.539    | chi2              | 0.527    |
| <b>n</b> <sub>TECH</sub> | 0.582    | $n_{TEndC}$       | 0.551    | r1                  | 0.550    | $n_{TID}$         | 0.532    |
| $\rho_{dd}$              | 0.598    | r1                | 0.588    | $n_{TEndC}$         | 0.552    | $z1_{\eta > 1.5}$ | 0.548    |
| n_40d                    | 0.673    | $n_{TECH}$        | 0.600    | $r1_{n < 1.5}$      | 0.573    | $r1_{n < 1.5}$    | 0.550    |
| r1                       | 0.687    | $z1_{\eta > 1.5}$ | 0.607    | $z1_{\eta > 1.5}$   | 0.579    | $n_{TEndC}$       | 0.554    |
| $r1_{\eta < 1.5}$        | 0.694    | $r1_{\eta < 1.5}$ | 0.612    | <b>n</b> TECH       | 0.593    | $n_{TECH}$        | 0.585    |
| z1                       | 0.705    | n_40d             | 0.648    | n_40d               | 0.624    | <b>z1</b>         | 0.612    |
| $z 1_{\eta > 1.5}$       | 0.719    | z1                | 0.666    | z1                  | 0.638    | n_40d             | 0.614    |

TABLE 6.1 – Classement des observables selon leur intégrale ROC pour les 4 lots de simulation. (à noter :  $r1=\sqrt{x1^2+y1^2}$  distance entre deux premiers hits dans le plan transverse et TID : Inner Disk.

#### Correlation Matrix between the 27 initial variables for the signal



#### Correlation Matrix between the 27 initial variables for the background



## Reconstruction of displaced Vertices



tee\_Vtx\_mva\_LLP1\_NCh2 (tee\_Vtx\_mva\_LLP1\_nTrixx=268tree\_Vtx\_mva\_LLP1\_NCh2>668tree\_passesHTFiter68tree\_Vtx\_mva\_LLP1\_NCh2<20)

## Reconstruction of displaced Vertices in the y axis



NURSEALING INCOMES AND AND A DRIVEN AND A

# Reconstruction of displaced Vertices with and without BDT along $\times$



# Reconstruction of displaced Vertices with and without BDT along $\boldsymbol{z}$



# Reconstruction of displaced Vertices without chi2 along ${\sf x}$ and ${\sf z}$ with BDT



# Reconstruction of displaced Vertices without chi2 along ${\sf x}$ and ${\sf z}$ without BDT



## RPV couplings in the superpotential

$$W = W_{MSSM} + W_{RPV}$$

with  $W_{RPV} = \epsilon_i(H_u.L_i) + \frac{1}{2}\lambda_{ijk}(L_i.L_j)E_k^c + \lambda'_{ijk}(L_i.Q_j)D_k^c + \frac{1}{2}\lambda''_{ijk}U_i^cD_j^cD_k^c$ 

- i, j, k going from 1 to 3 indicating the generation family
- <sup>c</sup> : Charge Conjugate
- $L_i$ ,  $Q_j$  et  $H_u$  are respectively the lepton, the quark and the up-Higgs SU(2) doublets superfields
- $E_i$  et  $D_i$  are respectively the lepton and the quark SU(2) singlets.
- $\epsilon_i, \lambda_{ijk}, \lambda'_{ijk}$  and  $\lambda''_{ijk}$  are dimensionless RPV couplings
- $\bullet$  Only the trilinear coupling  $\lambda_{312}^{''}$  is considered to be different from 0
- Only this coupling allows a top in the final state as well as the decay of a stop into quarks.

## RPV couplings in the superpotential

The boosting procedure is now employed to adjust the parameters P such that the deviation between the model response F(x) and the true value y obtained from the training sample is minimised. The deviation is measured by the so-called loss-function L(F, y), a popular choice being squared error loss L(F, y) =  $(F(x)y)^2$ . It can be shown that the loss function fully determines the boosting procedure. The GradientBoost algorithm attempts to cure this weakness by allowing for other, potentially more robust, loss functions without giving up on the good out-of-the-box performance of AdaBoost. The current TMVA implementation of GradientBoost uses the binomial log-likelihood loss L(F, y) = In $(1 + e^{2F(x)y})$ , for classification. As the boosting algorithm corresponding to this loss function cannot be obtained in a straightforward manner, one has to resort to a steepest-descent approach to do the minimisation. This is done by calculating the current gradient of the loss function and then growing a regression tree whose leaf values are adjusted to match the mean value of the gradient in each region defined by the tree structure. Iterating this procedure yields the desired set of decision trees which minimises the loss function. Note that GradientBoost can be adapted to any loss function as long as the calculation of the gradient is feasible.

Resampling includes the possibility of replacement, which means that the same event is allowed to be (randomly) picked several times from the parent sample. This is equivalent to regarding the training sample as being a representation of the probability density distribution of the parent sample: indeed, if one draws an event out of the parent sample, it is more likely to draw an event from a region of phase-space that has a high probability density, as the original data sample will have more events in that region. If a selected event is kept in the original sample (that is when the same event can be selected several times), the parent sample remains unchanged so that the randomly extracted samples will have the same parent distribution, albeit statistically fluctuated. Training several classifiers with different resampled training data, and combining them into a collection, results in an averaged classifier that, just as for boosting, is more stable with respect to statistical fluctuations in the training sample.

## stop mass and coupling dependence



Paul Vaucelle (Université de Strasbourg)

## stop mass and coupling dependence

# Tracking in CMS

## **1.EXPERIMENT** & SOFTWARE



\* Tracking Region : Cylindre in which we expect to have the point of closest approach of the seed

# New Tracking Iteration : DisplacedGeneralStep



Triplets **Outer Tracker** 

- Seeds TIB + TID + TOB
  - + TEC ring 5-7

#### Track Building :

- Max fraction shared = 0.25
- Allow shared first hits

Tracking Region:

- OriginHalfLength = 55 cm
- OriginRadius = 10 cm
- ptMin = 1 GeV

#### Quality Cuts :

- Max lost hits = 1
- Min number of hits = 8
- Max Chi2 = 10

Paul Vaucelle (Université de Strasbourg)

Search for long lived decays of new massive particles in

## stop mass and coupling dependence



#### Along beam axis



Paul Vaucelle (Université de Strasbourg)

June 21, 2022

66 / 68

## stop mass and coupling dependence



Figure 7: Mean flight distance of the neutralino in the laboratory frame as a function of neutralino and squark mass, and according to different values of  $\lambda''$  coupling.

## stop mass and coupling dependence



**Figure 6**: Mean value of the Lorentz factor  $\beta \cdot \gamma$  for the flying neutralinos in the both production cases.