Development of a New Reconstruction Algorithm for JUNO Top Tracker

Mohd Talha (M2-PSA)

Internship supervisor: J. P. A. M. de André Faculty of Physics and Engineering (Neutrino Group) University of Strasbourg

June 23, 2022

Neutrino properties

- Proposed by Pauli in 1930.
- Spin 1/2 neutral elementary particles.
- Interact via weak interactions.
- Massless in Standard Model.
- Sources:
 - Solar neutrinos
 - Atmospheric neutrinos
 - Cosmic (Relic, supernova,...) neutrinos
 - Reactor (anti)neutrinos
 - Accelerator neutrinos
 - Geoneutrinos

Momentum

JUNO Experiment

- Neutrino experiment based in South China.
- Surrounded by various Nuclear Power Plants.
- Primary goal to determine Neutrino Mass Ordering.

Mohd TALHA (UNISTRA)

Nobs/Nexp

June 23, 2022

4/15

$\bar{\nu}_e$ detection

- Inverse beta decay reaction is used to detect $\bar{\nu_e}$ $(\bar{\nu_e} + p \longrightarrow e^+ + n).$
- \bullet IBD events: \sim 83/day.

μ crossing CD

- Muons are one of major backgrounds.
- Tracking muon is the key.
- Cosmogenic isotopes $({}^{9}\text{Li}/{}^{8}\text{He}): \sim 84/\text{day.}$

Top Tracker

- 63 6.8 \times 6.8 m^2 square walls made of plastic scintillator strips.
- coverage: $20 \times 47 \ m^2$, 3 layers.
- $2.6 \times 2.6 \ cm^2$ spatial granularity.
- Conditions for good muon hits:
 - XY coincidence
 - Charge greater than 0.056pC \sim 1/3rd p.e. (to remove electronic noise).

WLS fibr

- Technique to isolate features of particular shape within an image.
- Image space (Cartesian space) \rightarrow Parameter space (Hough space)
- Points in the image space \rightarrow lines in the parameter space.
- $\bullet~$ collinear points $\rightarrow~$ lines crossing at single point.
- Construct all such transformations.
- Define accumulator array.
- Vote memory locations.
- Extract peaks.

Event display

8/15

Detector Granularity

Detector Granularity (cont.)

Efficiency and Angular Resolution

Optimization and sliding the bin center

Mohd TALHA (UNISTRA)

Mohd TALHA (UNISTRA)

13/15

Noise vs algorithm runtime

Algorithm runtime with increasing noise hits

- $\bullet\,$ New TT muon track reconstruction method was developed \rightarrow Hough Transform method.
- Varying granularity implemented.
- Noise implementation started.

Results

Efficiency:

- $\bullet\,$ in XZ projection: 0.946 \pm 0.004
- \bullet in YZ projection: 0.952 \pm 0.003

Algorithm runtime:

• 0.148 s/event

Angular resolution (σ): 0.332° \pm 0.005°

Next Steps

- Improve fake track rejection from noise.
- Implementation of the algorithm in the official JUNO software.

Back Up!

Bin Sizes Calculation

17/15

Binsize distribution

Reconstructed vs Simulated Tracks

Angular Resolution

- Uncertainty in efficiency:
$$\delta { extsf{e}} = \sqrt{rac{e(1-e)}{N}}$$

Backgrounds

- Accidental Backgrounds:
 - Radioactivity-Radioactivity: 1.1/day
 - Radioactivity-Cosmogenic isotope: <0.01/day
 - Radioactivity-Spallation neutrons: negligeable
- Cosmogenic ⁹*Li*/⁸*He* isotopes
 - most dangerous type
 - β n decays mimicking the IBD signature
 - Production cross-section $\propto E_{\mu}^{0.74}$

Selection	IBD efficiency	IBD	Geo- νs	Accidental	⁹ Li/ ⁸ He	Fast n	(α, n)
-	-	83	1.5	$\sim 5.7 \times 10^4$	84	-	-
Fiducial volume	91.8%	76	1.4		77	0.1	0.05
Energy cut	97.8%			410		1	
Time cut	99.1%	73	1.3		71		
Vertex cut	98.7%	1		1.1			
Muon veto	83%	60	1.1	0.9	1.6		
Combined	73%	60	3.8				

Resources: F. An et al., Neutrino Physics with JUNO [arxiv: 1507.05613v2]

Overburden	Muon flux	$< E_{\mu} >$	R_{μ} in CD	R_{μ} in WP
$748 \mathrm{~m}$	$0.003~\mathrm{Hz}/\mathrm{m}^2$	$215~{\rm GeV}$	$3.0~\mathrm{Hz}$	$1.0~\mathrm{Hz}$

Resources: F. An et al., Neutrino Physics with JUNO [arxiv: 1507.05613v2]

Multiplicity	1	2	3	4	5	6
Fraction	89.6%	7.7%	1.8%	0.6%	0.3%	0.07%

Resources: F. An et al., Neutrino Physics with JUNO [arxiv: 1507.05613v2]

- ${}^{13}C(\alpha, n){}^{16}O$
 - α particles from natural isotopes in surrounding rock react with the ${}^{13}C$ in the Liquid scintillator
- Geo-neutrinos
 - + $\bar{\nu_e}$ from radioactive decay of natural isotopes of surrounding rock

JUNO Experiment

- First experiment to see both oscillations (solar and atmospheric) at the same time
- JUNO is a disappearance experiment
- JUNO baseline (53km) is chosen in order to place it at $\bar{\nu}_e$ oscillation minimum
- With the expected good energy resolution, it can discriminate between the 2 mass orderings (hierarchies).

Mohd TALHA (UNISTRA)

Neutrino oscillation $(\bar{\nu}_e \rightarrow \bar{\nu}_e)$

- Oscillation region is different for different baseline.
- JUNO is placed at the minimum induced by Δm_{21}^2 .

• IBD:
$$\bar{\nu}_e + p \rightarrow n + e^+$$
 (Dominant Channel)

- $\nu_e + {}^{12}C \rightarrow e^- + {}^{12}N \quad (E_{th,\nu} = 17.34 \text{ MeV})$
- $\bar{\nu}_e + {}^{12}C \rightarrow e^+ + {}^{12}B \ (E_{th,\bar{\nu}} = 14.39 \ MeV)$
- $\nu_{\alpha} + {}^{12}C \rightarrow \nu_{\alpha} + {}^{12}C^*$ (Clear signal of SN ν 's, sensitive to μ and τ flavors due to their high energy)
- $\nu_{\alpha} + e^- \rightarrow \nu_{\alpha} + e^-$ (most sensitive to ν_e 's, used to detect prompt SN ν_e bursts)

• ν_{α} + p \rightarrow ν_{α} + p

Resources: F. An et al., Neutrino Physics with JUNO [arxiv: 1507.05613v2]