Université

de Strasbourg

New method for calibrating tau leptons in the CMS experiment at the LHC

M2 PSA Internship defence

21/06/2022

Océane PONCET

Directed by Saskia FALKE

au leptons

Standard Model (SM) of particle physics

Why τ leptons?

- $H \rightarrow \tau^+ \tau^-$ allows to probe the CP nature in the interaction of the Higgs boson with fermions.
- Search of physics beyond the SM (BSM).

Challenge: τ leptons **decay** \rightarrow need to be efficiently **reconstructed** from their decay products.

DECAY MODE OF au LEPTONS :

Objective: develop a new method for calibrating hadronic tau leptons (τ_h) during their reconstruction.

I. Experimental setup

II. τ_h reconstruction and identification in CMS

III. Study of the tau energy scale fit

IV. The new method : simultaneous fit

I. Experimental setup: CMS and LHC

LHC (Large Hadron Collider) particle accelerator on the French-Swiss border (CERN)

Particles are produced by proton-proton collisions at an energy of 13 TeV.

The particles are detected by the different layers of CMS (Compact Muon Solenoid).

II.A. τ_h reconstruction and identification in CMS

II.A. τ_h reconstruction and identification in CMS

Calibration of τ_h

Event samples with $Z \rightarrow \tau_{\mu} \tau_{h}$ decay are used as reference process for the calibration.

6

II.B. Calibration

 $m_{vis} =$ invariant mass of visible decay products

21/06/2022

II.B. Calibration

Correction factors adjust the m_{vis} distribution of the simulation on the data.

II.B. Calibration : Maximum likelihood fit

Correction factors adjust the m_{vis} distribution of the simulation on the data.

II.B. Calibration : simultaneous fit

Current approach in CMS: The ID SF and the TES are fitted separately on the same distributions.

Likelihood : $\mathcal{L}_{1,DM}$ (ID SF_{DM}, syst. uncert._{DM}) et $\mathcal{L}_{2,DM}$ (TES_{DM}, syst. uncert._{DM}, ID SF_{DM} uncert.)

New method : Simultaneous fit of the ID SF and the TES.

Likelihood : \mathcal{L}_{DM} (**ID SF**_{DM}, **TES**_{DM}, syst. uncert._{DM})

Goal :

 \hookrightarrow simplification of the interpretation of the results

 \hookrightarrow possible reduction of uncertainties

III.A. Study of the tau energy scale fit : Minimization of the background

Why ? To optimize the fit and reduce the uncertainties. **How ?** Applying cuts on variables that **discriminates** the background and signal easily $\rightarrow m_T(\mu, MET)$

III.B. Study of the tau energy scale fit : the TES fit

III.C. Study of the tau energy scale fit : Asimov dataset

Asimov data set = "perfect data set" = all observed quantities are set equal to their expected values and there are no statistical fluctuations.

Useful to study the source of **instability** in the fit and **uncertainties**.

III.D. Study of the tau energy scale fit : uncertainties

Total uncertainties on the TES: $\sigma_{tot}^2 = \sigma_{stat}^2 + \sigma_{syst}^2 + \sigma_{simul}^2$

Decay mode (DM)	DM0 : h^\pm	DM1 : $h^\pm\pi^0$	DM10 : $h^{\pm}h^{\mp}h^{\pm}$	DM11 : $h^{\pm}h^{\mp}h^{\pm}$ π^0
Total uncer. (σ_{tot}^2)	-0.0060	-0.0036	-0.0045	-0.0078
	+0.0069	+0.0045	+0.0039	+0.0078
Syst. uncertainty (σ_{syst}^2)	-0.0043	-0.0029	-0.0030	-0.0046
	+0.0055	+0.0036	+0.0021	+0.0041
Stat uncert. on the simulation (σ^2_{simul})	-0.0038	-0.0017	-0.0029	-0.0054
	+0.0035	+0.0027	+0.0025	+0.0051
Stat. uncer (σ_{stat}^2)	-0.0018	-0.0012	-0.0015	-0.0033
	+0.0024	+0.0020	+0.0021	+0.0042

Systematic uncertainties and statistical uncertainty on the simulation are dominant.

IV.A. The new method : Simultaneous fit of the TES and the ID SF

Likelihood : $\mathcal{L}_{DM}(ID SF_{DM}, TES_{DM}, syst. uncert._{DM})$

Simultanous fit by decay mode (DM):

- The values of the ID SF are different of 1 including the error bars. It shows the **importance of the calibration** step.
- The values of the ID SF seem to decrease linearly as a function of the number of particles in the decay mode.
- Results are **consistent** with the previous ones obtained with a separated fit.

IV.A. The new method : Simultaneous fit of the TES and the ID SF

2D log likelihood profiles for each decay mode (DM)

IV.B. New method : Combined fit of the TES and the ID SF in several regions

 \hookrightarrow **New regions** of the fit has been created.

The common uncertainties can be constrained to stabilize the fit.

 \hookrightarrow The fit is done **simultaneously on the regions**.

The ID SF are fitted by $p_T(\tau_h)$ regions.

Measurement of tid SF

Conclusion

Study of the TES fit shows that the **fit are dominated by the systematic uncertainties** and mostly by **the statistical uncertainty of the simulation** \rightarrow will be improved in next data taking.

Outlook

For the 1st time, a simultaneous fit of the TES and the ID SF has been implemented.

- By decay mode (DM) \rightarrow It gives better interpretation of the results and of the uncertainties.
- By kinematic regions and DM fitted simultaneously → implemented in a flexible way such that it is possible to easily add or modified the regions of the fit.

The profile likelihood scans of the ID SF are smooth, but the ones of the TES show fluctuations. Further investigations are needed to find how to reduce them.

This new method will be useful for **analysis using** τ_h such as the search of charge-parity (CP) violation in $H \rightarrow \tau \tau$ decay and for the new data taking.

Questions ?

Higgs boson decay

Branching Ratio: The probability that a particle decays in one decay mode out of all of its decay modes.

Vocabulary

- Electron volt (eV) : $1 \text{ eV} = 1,602 \text{ } 176 \text{ } 634 \times 10^{-19} \text{ J} \rightarrow 1 \text{ TeV} = 10^{12} \text{ eV} = 1,602 \text{ } 177 \times 10^{-7} \text{ J}$
- **hadrons :** composite particle made up of quarks (and gluons) governed by the strong interaction (e.g. proton, neutrons)
- Transverse momentum p_T : momentum in the transverse plane of the beam .

• Invariante mass : M =
$$\sqrt{(\sum_i E_i)^2 - (\sum_i p_i)^2}$$

•
$$m_T(\mu, MET) = \sqrt{\left(E_{T,\mu} + E_{T,MET}\right)^2 - \left(\overline{p_{T,\mu}} + \overline{p_{T,MET}}\right)^2}$$

Systematci uncertainties

Tau ES systematic uncertainties

 $\begin{array}{l} \mathsf{DY} \; = \mathsf{Drell-Yan}\;\mathsf{MC}\;(\mathsf{ZTT} + \mathsf{ZL} + \mathsf{ZJ})\\ \mathsf{ZTT} = \mathsf{DY},\;\mathsf{real}\;\tau_{\mathsf{h}}\\ \mathsf{ZL} \; = \mathsf{DY},\; \ell \to \tau_{\mathsf{h}}\;\mathsf{fake}\\ \mathsf{ZJ} \; = \mathsf{DY},\; j \to \tau_{\mathsf{h}}\;\mathsf{fake}\\ \mathsf{ttbar} = \mathsf{TTT} + \mathsf{TTL} + \mathsf{TTJ} \end{array}$

nuissance parameter	distribution	uncertainty	applied to
luminosity	InN	±2.5%	all, except QCD
muon efficiency	InN	±2%	all, except QCD
tau ID	shape	from recommendation	ZTT, TTT
DY cross section	InN	±2%	DY
ttbar cross section	InN	±6%	ttbar
single top cross section	InN	±5%	single top
diboson cross section	InN	±5%	diboson
W + jets normalization	InN	±8%	WJ
QCD normalization	InN	±10%	QCD
$j \rightarrow \tau_{\rm h}$ fake rate	InN	±15%	ZJ, WJ, QCD, TTJ, STJ
$j \rightarrow \tau_{\rm h}$ fake energy scale	shape	±5% on $j \rightarrow au_{\rm h}$ energy	ZJ, W, TTJ
$\ell \rightarrow \tau_{\rm h}$ fake rate	shape	from recommendation	ZL, TTL
$\ell \rightarrow \tau_{\rm h}$ fake energy scale	shape	±2% on $\ell \rightarrow \tau_{\rm h}$ energy	ZL, TTL
$Z p_T$ reweighting	shape	apply weight ±10%	DY
bin-by-bin	shape		all

au leptons

Table 1: Decays of τ leptons and their branching fractions (\mathcal{B}) in % [59]. The known intermediate resonances of all the listed hadrons are indicated where appropriate. Charged hadrons are denoted by the symbol h^{\pm} . Although only τ^{-} decays are shown, the decays and values of the branching fractions are identical for charge-conjugate decays.

Decay mod	le Resonance	$\mathcal{B}($	%)
Leptonic deca	iys	35.2	
$ au^- ightarrow { m e}^- \overline{ u}_{ m e}$	$\nu_{ au}$		17.8
$ au^- o \mu^- \overline{ u_\mu}$	$_{\iota}\nu_{ au}$		17.4
Hadronic dec	ays	64.8	
$ au^- ightarrow { m h}^- u_{ m a}$	r.		11.5
$ au^- ightarrow { m h}^- \pi$	$^{0}\nu_{\tau}$ $\rho(770)$		25.9
$ au^- ightarrow { m h}^- \pi$	$^{0}\pi^{0}\nu_{\tau}$ $a_{1}(1260)$		9.5
$ au^- ightarrow { m h}^- { m h}^-$	$^{+}h^{-}\nu_{\tau}$ $a_{1}(1260)$		9.8
$ au^- ightarrow { m h}^-{ m h}^-$	$^+h^-\pi^0 u_{ au}$		4.8
Other			3.3

 $m_T =$ 1 777 MeV.c⁻² lifetime $au_ au =$ 2.8×10⁻¹³ s

$$\tau^{-} \xrightarrow{V_{\tau}} e^{-}, \mu^{-}, d$$

$$W^{-} \xrightarrow{e^{-}, \mu^{-}, d}$$

$$\overline{V_{e}}, \overline{V_{\mu}}, \overline{u}$$

III.D. Study of the tau energy scale fit : Systematic uncertainties

Total uncertainties on the TES: $\sigma_{tot}^2 = \sigma_{stat}^2 + \sigma_{syst}^2$ **dominant**

Main source of systematic uncertainties :

- ⇒ ID SF uncert. : should be reduced with combine fit of the TES and the ID SF
- ⇒ Fake tau: need further investigations
- ⇒ BBB uncert. : related to the statistics of the Monte Carlo
- ⇒ common uncertainties: constrain them with combine fit on regions

The TES fit by DM

	Séparé	Simultané
\mathbf{h}^{\pm}	$0.9918^{-0.0077}_{+\textbf{0.0056}}$	0.9907 ^{-0.0073 +0.0057}
$h^{\pm}\pi^0$	$1.0034^{-0.0039}_{+0.0033}$	1.0039 ^{-0.0034 +0.0034}
$\mathbf{h}^{\pm} \mathbf{h}^{\mp} \mathbf{h}^{\pm}$	$0.9890^{-0.0043}_{+0.0043}$	$0.9898^{-0.0043}_{+\textbf{0.0041}}$
$h^{\pm} h^{\mp} h^{\pm} \pi^0$	0.9989 ^{-0.0077 +0.0101}	1.0025 ^{-0.0089} + 0.0089

Simultaneous fit of the energy scale and the identification efficiency

Searching for charge-parity (CP) violation in $H \rightarrow \tau^+ \tau^-$ decay

CP properties :

CP properties of Higgs bosons = behavious under **C**harge and **P**aritey transformation.

C symmetry transforms the particle into its antiparticule:

 \rightarrow No effect because the Higgs bson is neutral

P symmetry inverse the **spatial coordinates** :

 \rightarrow If not effect, H is scalar or CP even (SM) (pair)

→ If transformed, H is **pseudo scalar or CP odd (impair)**

The Higgs boson transmits its CP properties to fermions through the Yukawa coupling: different for each fermion.

To measure the CP properties of the Higgs boson we need to measure Φ_{τ} which is sensitive to CP properties.

Searching for charge-parity (CP) violation in $H \rightarrow \tau^+ \tau^-$ decay

For a coupling to a pair of taus the Yukawa coupling is written:

T

$$L_{Y} = -\frac{m_{\tau}}{v} \kappa_{\tau} (\cos \Phi_{\tau} \bar{\tau} \tau + \sin \Phi_{\tau} \bar{\tau} \tau i \gamma_{5} \tau) h$$

$$\pi^{+}$$

 ν : vacuum expectation value κ_{τ} : CP-pair coupling strength Φ_{τ} : mixing angle τ : tau lepton field γ_5 : Dirac matrix h :

To measure the CP properties of the Higgs boson we need to measure Φ_{τ} the angle between the planes.

Tau ID SF CMS results

Tau ID SF log likelihood profiles

TES log likelihood profiles

21/06/2022

Blibliographie

Images :

٠

- https://fr.wikipedia.org/wiki/Modèle_standard_de_la_physique_des_particules#/media/Fichier:Standard_Model_of_Elementary_Particles-fr.svg
- https://fr.wikipedia.org/wiki/CMS (expérience)#/media/Fichier:Schema_transverse_cms.png
- <u>https://structurae.net/fr/ouvrages/large-hadron-collider-lhc</u>
- <u>https://cms.cern/detector</u>
- https://indico.cern.ch/event/981823/contributions/4295585/attachments/2250510/3819690/poster_434.pdf
- <u>https://en.wikipedia.org/wiki/Tau (particle)</u>
- https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm