Study of the production of superheavy nuclei for $S³$ on SPIRAL2

M2-PSA internship defense

Léo Petit-Barande

GANIL Supervisor: Julien Piot

June 22, 2022

Léo Petit-Barande [M2-PSA internship defense](#page-29-0) June 22, 2022 1 / 30

GANIL and SPIRAL2

Grand Accélérateur National d'Ions Lourds

- Research center in Caen established in 1983 by the CNRS and CEA.
- Nuclear physics, astrophysics, atomic physics, material sciences, radiobiology.
- \bullet Original complex: 5 cyclotrons to accelerate $^{12}C ^{238}U$ beams.
- SPIRAL2 project: new linear accelerator to accelerate 1 H 238 U beams at intensities 10 times larger than the original complex.

 Ω

(ロ) (何) (ヨ) (ヨ)

Superheavy elements

- Definition may vary but generally $Z > 104$
- Existence only possible through shell effects

Island of stability (next magic numbers after ²⁰⁸Pb)

M. Bender, W. Nazarewicz and P.-G. Reinhard, Phys. Lett. B, 515:42, 2001.

4 **E** F

 200

The fusion-evaporation mechanism

Main mode of production of superheavy elements: fusion-evaporation

- CN: compound nucleus
- **•** ER: evaporation residue

 200

Spectroscopy of superheavy elements

Objective: study the nuclear structure features of superheavy elements. Two types of spectroscopy:

The Super Separator Spectrometer (S^3)

F. Déchéry et al., Nucl. Instr. Meth. B, 376:125, 2016.

- **•** Separator for fusion-evaporation with very low cross-sections
- Uses the high intensity beams from SPIRAL₂

• Synthesis of nuclei in the superheavy and $N = Z$ regions, plasma physics

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

• Due in 2024

 Ω

Motivation of the study

Excitation function

ER production cross-section as a function of E^* (excitation energy of the CN), E_{cm} (incident energy in the center-of-mass frame) or E_{lab} (incident energy in the laboratory frame).

- $S³$: we want to obtain the best possible ER production rates.
- It is necessary to select the beam energy so as to correspond to the maximum of the excitation function.
- We need to be able to simulate fusion-evaporation reactions \rightarrow KEWPIE2 code (2015).

E. D. Donets and V. A. Shchegolev and V. A. Ermakov, Soviet Journal of Nuclear Physics, 2:723, 1966.

イロト イ押 トイヨ トイヨト

 Ω

Objective

.

Study the modeling of the fusion-evaporation mechanism with KEWPIE2 and draw information that will guide the future use of the code in preparing the experiments planned on S^3 , by comparing calculation results to experimental measurements.

 200

General framework of KEWPIE2

- Code simulating the fusion-evaporation mechanism to obtain excitation functions for ER production.
- **Cross-sections are calculated with :**

$$
\sigma_{ER}(E_{cm})=\frac{\pi\hbar^2}{2\mu E_{cm}}\sum_{\ell\geq 0}(2\ell+1)P_{fus}(E_{cm},\ell)P_{surv}(E^*,\ell)
$$

- The fusion and deexcitation phases can be considered independent of each other (Bohr independence hypothesis).
- Two fusion models are available in KEWPIE2 and it is also possible to directly specify fusion cross-sections.

 Ω

General framework of KEWPIE2 — deexcitation

Dynamical cascade :

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Comparison of KEWPIE2 results with experimental data

We start by studying reactions using a 40 Ar projectile. A number of experimental excitation functions have been published in D. Vermeulen et al., Z. Phys. A. 318:157, 1984.

There is a large difference (up to several orders of magnitude) bewteen the KEWPIE2 results and the experimenta[l m](#page-9-0)[ea](#page-11-0)[su](#page-9-0)[re](#page-10-0)[m](#page-11-0)[en](#page-0-0)[ts.](#page-29-0) QQ イヨッ

Léo Petit-Barande [M2-PSA internship defense](#page-0-0) June 22, 2022 11 / 30

Such a large discrepancy could result from a bad estimation of the fission barriers, which is a parameter the cross-sections are very sensitive to.

$$
B_f = B_{LDM} - \Delta E_{sh}
$$

$$
\Delta E_{sh} = f \cdot \Delta E_{MN}
$$

- The liquid drop fission barrier B_{LDM} can be calculated with 2 different modeles : Thomas-Fermi (TF) model (default) and Lublin-Strasbourg Drop (LSD) model.
- \bullet The shell-correction factor f can be adjusted (between 0 and 1).

KEL KALA SI KEL KA GARA

Other parameters of interest — fission

The fission decay width $\mathsf{\Gamma}_f^{\mathsf{BW}}$ calculated with the Bohr-Wheeler model can be multiplied by a correction factor (Kramers-Strutinsky factor) to account for viscosity:

$$
\Gamma_f = K \cdot S \cdot \Gamma_f^{BW}
$$

$$
K = \sqrt{1 + \left(\frac{\beta}{2\omega_{sd}}\right)^2} - \frac{\beta}{2\omega_{sd}}
$$

$$
S = \frac{\hbar\omega_{gs}}{T_{gs}}
$$

β: reduced friction coefficient (5 zs⁻¹ by default) — free parameter

≮ロト ⊀母 ト ⊀ ヨ ト ⊀ ヨ ト ー

 Ω

Other parameters of interest — level density

- The nuclear level density plays an important role in the calculation of the various decay widths.
- Level-density parameter a.
- Four different expressions for a: Fermi gas model (a_0) , Toke and Świątecki (a_1) , Reisdorf (a_2) , Nerlo-Pomorska et al. (a_3) .
- Ignatyuk's prescription:

$$
a_{\text{gs}}(E^*) = a \left[1 + (1 - e^{-E^*/E_d}) \frac{\Delta E_{\text{sh}}}{E^*} \right]
$$

• E_d : shell-damping energy (19 MeV by default) — free parameter

KOD KAR KED KED E VAN

χ^2 analysis

Procedure

To adjust the model we proceed to do a χ^2 analysis. The χ^2 value is to be compared to the number of degrees of freedom, equal here to the number of experimental values N. We can define a reduced χ^2 that is to be compared to 1 : $\chi^2_r = \frac{\chi^2}{N}$ $\frac{\chi^-}{N}$.

 $^{40}Ar + ^{165}H_0$

Léo Petit-Barande [M2-PSA internship defense](#page-0-0) June 22, 2022 15 / 30

つへへ

Results for ${}^{40}Ar + {}^{165}H_0$ and ${}^{40}Ar + {}^{169}Tm$

The amplitudes and positions of the maxima of the excitation functions are indeed well reproduced. However, the 3n $/2n + 3n$ channels appear to still be underestimated.

 QQ

Results for $^{40}Ar + ^{171}Yb$ and $^{40}Ar + ^{174}Yb$

"LSD + $a_2 + E_d = 15$ MeV" configuration

The positions of the maxima are well reproduced, and so are the orders of magnitude except for the 2n+3n channel as before, as well as for the 6n / 6n+7n channels.

重

 QQ

イロト イ押ト イヨト イヨト

Taking γ emission into account

The 2n / 2n+3n channels may be underestimated because until now γ emission, which would compete with fission, has not been taken into account. We can do so in KEWPIE2 with the SMLO model.

 $^{40}Ar + ^{165}H_0$

K 로 K K 로 K - 로 - KD Q Q Q

Results for ${}^{40}Ar + {}^{165}H_0$ and ${}^{40}Ar + {}^{169}Tm$

"LSD + SMLO" configuration

The amplitudes for the 2n / 2n+3n channels are no longer underestimated in a substantial manner.

 QQ

D.

イロメ イ部 メイヨメ イヨメー

Results for $^{40}Ar + ^{208}Pb$

We now consider a significantly heavier target (^{208}Pb) and compare the KEWPIE2 results with experimental values from D. Ackermann, Diplomarbeit, Technische Hochschule Darmstadt, 1989, as well as results from the HIVAP code.

Léo Petit-Barande [M2-PSA internship defense](#page-0-0) June 22, 2022 20 / 30

Results for $^{18}O + {}^{238}U$

We now change both projectile and target and compare the KEWPIE2 results with experimental values from E. D. Donets, V. A. Shchegolev, V. A. Ermakov, Soviet Journal of Nuclear Physics, 2:723, 1966, as well as results from the HIVAP code.

Léo Petit-Barande [M2-PSA internship defense](#page-0-0) June 22, 2022 21 / 30

Conclusion

- We could successfully reproduce the positions of the maxima and the orders of magnitude of excitation functions for reactions with a ⁴⁰Ar projectile and a range of targets. However the 6n channel was sometimes underestimated.
- \bullet The results were not as good when changing target and projectile (18 O) $+$ ²³⁸U reaction).
- Taking γ emission into account and using the LSD fission barriers generally lead to better results.
- There is still much to do, the next step is to simulate reactions with various mass numbers to get a better global picture of KEWPIE2's ability to model fusion-evaporation reactions.
- Globally the simulation works relatively well, but the extrapolation power is low since we need to adjust for different reactions.

KOD KARD KED KED A BOAR

Thank you for your attention!

Léo Petit-Barande [M2-PSA internship defense](#page-0-0) June 22, 2022 23 / 30

 \mathbf{h}

 \rightarrow \equiv \rightarrow

重

 QQ

不自下

4 母 8 4

The SIRIUS detection system

Spectroscopy and Identification or Rare Isotopes Using $S³$ (detection system for decay spectroscopy after separation)

- Implantation detector: 10×10 cm² DSSD (Double-sided Silicon Strip Detector)
- \bullet 4.10 \times 10 cm² Si tunnel detectors
- 5 Ge clover detectors (EXOGAM)

Currently: only the DSSD and 1 tunnel detector

イロト イ母 トイヨ トイヨト

Thomas-Fermi (TF) model (fission barriers)

$$
B_{LDM}=P\cdot F(X)
$$

$$
\digamma(X) = \left\{ \begin{array}{cl} 0.595553 - 0.124136(X-X_1) & \text{for } 30 \leq X \leq X_1 \\ 1.99749 \cdot 10^{-4} (X_0 - X)^3 & \text{for } X_1 \leq X \leq X_0 \end{array} \right.
$$

$$
X = \frac{Z_C^2}{A_C(1 - k_s l_c^2)}
$$

$$
X_0=48.5428\,
$$

$$
X_1=34.15
$$

$$
P=A_C^{2/3}(1-k_s l_c^2)
$$

$$
k_s = 1.9 + (Z_C - 80)/75
$$

画 -990

Lublin-Strasbourg Drop (LSD) model (fission barriers)

$$
B_{LDM} = B_{max} \exp \left[- \left(\frac{I_C - I_0}{\Delta_I} \right)^2 \right]
$$

$$
B_{\text{max}} = a_0 + a_1 Z_C + a_2 Z_C^2 10^{-2} + a_3 Z_C^3 10^{-4}
$$

$$
I_C = (A_C - 2Z_C)/A_C
$$

$$
I_0 = a_4 + a_5 Z_C 10^{-4}
$$

$$
\Delta_I = a_6 + a_7 Z_C 10^{-2} + a_8 Z_C^2 10^{-4}
$$

4 ロ ▶ 4 母 ▶ 4

 λ in \Rightarrow λ

造

Level-density parameter (1)

• Tōke and Świątecki:

$$
a_1 = \frac{A}{14.61} \left(1 + 3.114 \frac{B_s}{A^{1/3}} + 5.626 \frac{B_k}{A^{2/3}} \right) \left(1 - \frac{I^2}{9} \right)
$$

e Reisdorf[:]

$$
a_2=A\left(0.04543r_0^3+0.1355r_0^2\frac{\mathcal{B}_s}{\mathcal{A}^{1/3}}+0.1426r_0\frac{\mathcal{B}_k}{\mathcal{A}^{2/3}}\right)
$$

Nerlo-Pomorska et al.:

$$
a_3=0.092A+0.036A^{2/3}\mathcal{B}_s+0.275A^{1/3}\mathcal{B}_k-0.00146\frac{Z^2}{A^{1/3}}\mathcal{B}_c
$$

÷

4 ロト 4 母 ト 4

A Brazil

D.

Level-density parameter (2)

• Surface term:

• Curvature term:

$$
\mathcal{B}_s = 1 + \frac{2}{5}\alpha_2^2 - \frac{4}{105}\alpha_2^3 - \frac{66}{175}\alpha_2^4
$$

$$
\mathcal{B}_k = 1 + \frac{2}{5} \alpha_2^2 + \frac{16}{105} \alpha_2^3 - \frac{82}{175} \alpha_2^4
$$

• Coulomb term:
\n
$$
\mathcal{B}_c = 1 - \frac{1}{5}\alpha_2^2 - \frac{4}{105}\alpha_2^3 + \frac{51}{245}\alpha_2^4
$$

Ground state:

$$
\alpha_2=\sqrt{\frac{5}{4\pi}}\beta_2
$$

Saddle point:

$$
\alpha_2 = \frac{7}{3}y - \frac{938}{765}y^2 + 9.499768y^3 - 8.050944y^4
$$

Léo Petit-Barande [M2-PSA internship defense](#page-0-0) June 22, 2022 28 / 30

重き

 \rightarrow

活

Empirical Barrier Distribution (EBD) model (fusion)

$$
\sigma_{cap} = \int_0^{E_{cm}} \sigma_{cap}(E_{cm}, B) D(B) \, \mathrm{d}B
$$

$$
\sigma_{cap}(E_{cm}, B) = \pi R^2 \left(1 - \frac{B}{E_{cm}}\right)
$$

$$
D(B) = \frac{1}{\sqrt{2\pi}w} \exp\left[-\frac{(B - B_0)^2}{2w^2}\right]
$$

Léo Petit-Barande [M2-PSA internship defense](#page-0-0) June 22, 2022 29 / 30

÷

医尿囊的

造

4 ロ ▶ 4 母 ▶ 4

Wentzel-Kramers-Brillouin (WKB) approximation (fusion)

$$
P_{cap}(E_{cm}, J_C) = \frac{1}{1 + \exp(2\Omega)}
$$

$$
\Omega = \int_{r_{int}}^{r_{out}} dr \sqrt{\frac{2\mu}{\hbar^2} [V(r) - E_{cm}]}
$$

$$
V(r) = V_N(r) + V_{coul}(r) + V_{cent}(r)
$$

Léo Petit-Barande [M2-PSA internship defense](#page-0-0) June 22, 2022 30 / 30

 \sim

A Braker D. QQ

4 ロ ▶ 4 母 ▶ 4