Introduction Theoretic 00 000000

Signature @ IDEA

mary References

Study of an effective extension of the Standard Model and sensitivities to its most promising experimental signatures for the FCC-ee Master 2 Subatomic Physic and Astroparticles - Internship

MOUGIN Hugo, supervised by Eric Conte and Robin Ducrocq

University of Strasbourg - IPHC-PICSEL

22/06/2022

MOUGIN Hugo, supervised by Eric Conte and Robin Ducrocq

University of Strasbourg - IPHC-PICSEL

ELE DOG

Introduction ●0	Theoretical context	Experimental context	Model phenomenology	Signature @ IDEA 00000000		References 00000		
Introduction								

- Standard Model (of particle physics): theoretical framework which describes the interaction of elementary particles.
- Conceptual problems with the Standard Model: no gravity description, hierarchy problem, neutrinos mass, strong CP violation problem,...
- A solution to the latter problem: Peccei-Quinn mechanism. But, it leads to the existence of a new particle: the axion.
- The axion is searched at particle colliders, such as the current LHC or the future FCC-ee.

Our work in 2 parts:

- Theoretical study of a new model which extends the Standard Model by including an axion-like particle.
- Choice of a relevant experimental signature relative to the axion and study the sensibility of the detector IDEA @ FCC-ee to this signature.

Research group: PICSEL @ IPHC (R&D in CMOS sensors for FCC-ee and estimation of their impact on the physics performance) $\rightarrow (\overrightarrow{O} + (\overrightarrow{O} + (\overrightarrow{O}$

Introduction 00	Theoretical context	Experimental context	Model phenomenology	Signature @ IDEA 00000000	Summary 000	References 00000
Introdu	ction					

1 Theoretical context

- 2 Experimental context
- **3** Phenomenological study of an extension of the Standard Model
- 4 Simulation of the detector response with respect to a long-lived axion signature
- **5** Conclusion and perspective

<ロ> <四> <四> <回> <回> <回> <回> <回> <回> <回> <<0</p>

Theoretical context	Experimental context	Model phenomenology	Signature @ IDEA	References
00000				

1 Theoretical context

- 2 Experimental context
- 3 Phenomenological study of an extension of the Standard Model
- ④ Simulation of the detector response with respect to a long-lived axion signature
- 6 Conclusion and perspective

6 References

Introduction Theoretical context Experimental context Model phenomenology Signature @ IDEA Summary References

CP violation discovery in the weak interaction

Discrete transformations in Standard Model:

- C: charge conjugation (electrical charge inversion)
- P: parity (space inversion)
- T: time reversal
- and all possible combinations: CP, TC, TP, CPT

Initial assumption: the theory is invariant under these transformations but:

- C and P symmetries are violated in the weak sector (Lee and Yang's predictions, then Wu's measurement in 1956).
- CP symmetry (= particle/anti-particle symmetry) is also violated in the weak sector (kaons system in 1964).

ELE NQA

Sources of CP violation in the Standard Model:

- In the weak sector: complex phase in the CKM matrix.
- There is another source in the strong sector: the θ -term.

What is the θ -term in QCD(Quantum ChromoDynamics)?

• Propagation of the gluons are traditionally described by the kinetic term:

$$\mathcal{L}_{QCD} = -rac{1}{4} G^A_{\mu
u} G^{\mu
u}{}_A$$

with:
$$G_{\mu\nu}{}^{A} = \partial_{\mu}G_{\nu}{}^{A} - \partial_{\nu}G_{\mu}{}^{A} + ig_{s}f_{BC}^{A}G_{\mu}^{B}G_{\nu}^{C}$$

 f_{BC}^{A} are constant structure of SU(3) Lie group, A,B,C are colors indices.

 Lorentz and gauge invariance + renormalizability conditions autorize to include another term called θ-term that violates the CP symmetry:

$$\mathcal{L}_{\theta_{QCD}} = -\frac{\theta_{QCD}}{4} G_{\mu\nu}{}^{A} \tilde{G}^{\mu\nu}{}_{A} \text{ with } \tilde{G}^{\mu\nu}{}_{A} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} G_{\rho\sigma A}$$

where $\epsilon^{\mu\nu\rho\sigma}$ is the anti-symmetric tensor.

The term can be re-shaped as a surface term :

$$\mathcal{L}_{ heta_{QCD}} = -rac{ heta_{QCD}}{2} \epsilon^{\mu
u
ho\sigma} \partial_{\mu} (G^{A}_{
u}\partial_{
ho}G^{A}_{\sigma} - rac{2}{3}iG^{A}_{
u}G^{B}_{
ho}G^{C}_{\sigma})$$

But it does not vanish in QCD.

It generates non-perturbative effects such as a electric dipole moment for the neutron which is proportional to θ_{QCD} .

Experimental limits on the neutron electric dipole moment provide a limit on θ_{QCD} :

$$|\theta_{QCD}| < 5.6 \times 10^{-11}$$

Why so close to 0? Strong CP problem

< □ → < 団 → < 重 → < 重 → < 重 → 三 = つへ (~ University of Strasbourg - IPHC-PICSEL Introduction Theoretical context Experimental context Model phenomenology Signature @ IDEA Summary References 0000000 Peccei-Quinn mechanism and introduction of the axion

Fig 2: Roberto Peccei (1942-2020) and Helen Quinn (1943-Present)

- Peccei-Quinn mechanism in 1977: imposing a new U(1) symmetry which is spontaneously broken at the energy scale Λ.
- If this continuous symmetry were exact, then Goldstone theorem: existence of a massless scalar particle (Goldstone boson).
- As this symmetry is approximate (anomalous breaking due to the θ-term), existence of a scalar particle with a small mass (pseudo-Goldstone boson). It is named axion and noted a.

	Theoretical context ○○○○○●	Experimental context	Model phenomenology	Signature @ IDEA 00000000	References 00000
Axion p	roperties				

• Mass: $m_a \propto \frac{1}{\Lambda}$ The more the bro

The more the broken scale is high, the more the axion is light. Traditional range scrutinized for QCD axions: few MeV at maximum.

- Charge: electrically neutral, no coloured.
- **Coupling with standard particles**: if A scale is high, the coupling will be low.
 - The axion can be long-lived and be "invisible" for particle detectors.
 - Good candidate for dark matter?

Axion-like particles can appear in other theoretical SM extensions.

 \rightarrow Motivations for studying a unique effective model.

Theoretical context	Experimental context	Model phenomenology	Signature @ IDEA	References
	000			

Theoretical context

Experimental context

- **3** Phenomenological study of an extension of the Standard Model
- G Simulation of the detector response with respect to a long-lived axion signature
- 6 Conclusion and perspective

6 References

	Theoretical context	Experimental context	Model phenomenology	Signature @ IDEA 00000000	References 00000
FCC-ee					

- Project of a future e^+e^- collider at CERN.
- 100km of circumference.
- Currently at feasibility study phase.
- Planned operation between 2040 and 2055.

Energies targeted:

type of events	Z peak	W^+W^-	hZ	tī
\sqrt{s}	91 GeV	160 GeV	240 GeV	360 GeV

University of Strasbourg - IPHC-PICSEL

	Theoretical context	Experimental context ○○●	Model phenomenology	Signature @ IDEA 00000000	References 00000
IDEA d	etector				

Magnet $z = \pm 300$ cm

Fig 3: IDEA detector design

MOUGIN Hugo, supervised by Eric Conte and Robin Ducrocq

University of Strasbourg - IPHC-PICSEL

Theoretical context	Experimental context	Model phenomenology	Signature @ IDEA	References
		000000		

1 Theoretical context

2 Experimental context

3 Phenomenological study of an extension of the Standard Model

- ④ Simulation of the detector response with respect to a long-lived axion signature
- 6 Conclusion and perspective

6 References

	Theoretical context	Experimental context	Model phenomenology ○●○○○○○	Signature @ IDEA 00000000	References 00000
Model					

- Effective theory : theory with a little number of parameters that characterized the studied system for a given energy scale Λ, non-renormalizable.
- Our model is composed by all the possible interactions terms with dimension 5 operators.
- Lagrangian density:

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{2} (\partial^{\mu} a) (\partial_{\mu} a) - \frac{m_{a}^{2}}{2} a^{2} + g_{s}^{2} \frac{C_{GG}}{\Lambda} a G_{\mu\nu}^{A} \tilde{G}_{\mu\nu}^{A} + g^{2} \frac{C_{WW}}{\Lambda} a W_{\mu\nu}^{i} \tilde{W}_{\mu\nu}^{i} + g^{\prime 2} \frac{C_{BB}}{\Lambda} a B_{\mu\nu} \tilde{B}_{\mu\nu} + \frac{C_{a\Phi}}{\Lambda} [ia(i\bar{Q}_{L}Y_{U}\sigma^{2}\Phi^{*}u_{R} - \bar{Q}_{L}Y_{D}\Phi d_{R} - \bar{L}_{L}Y_{E}\Phi e_{R}) + h.c.]$$

University of Strasbourg - IPHC-PICSEL

⇒ ↓ ≡ ↓ ≡ | = √Q ∩

	Theoretical context	Experimental context	Model phenomenology ○○●○○○○	Signature @ IDEA 00000000	References 00000
Interact	ions				

We would like to know the interactions between the axion and the other particles, and the corresponding Feynman rules. Our work was to rewrite the Lagrangian density by:

- specifying the mass states instead of the gauge states for the bosons.
- breaking spontaneously the electroweak symmetry.

$$egin{aligned} & \mathcal{B}_\mu = c_\omega \mathcal{A}_\mu - s_\omega Z_\mu \,\,, & \mathcal{W}^3_\mu = s_\omega \mathcal{A}_\mu + c_\omega Z_\mu \,\,, \ & \mathcal{W}^\pm_\mu = rac{1}{\sqrt{2}} (\mathcal{W}^1_\mu \mp i \mathcal{W}^2_\mu) \,\,, \end{aligned}$$

$$\Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix}$$

 $A^{\mu},\,Z^{\mu}$ and W^{\pm}_{μ} are the vectorial fields for the photon, the Z boson W^+ and $W^-.$

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ | = <) Q (
 University of Strasbourg - IPHC-PICSEL

	Theoretical context 000000	Experimental context	Model phenomenology ○○○●○○○	Signature @ IDEA 00000000	References 00000
Interact	ions				

Interactions between the axion and the other bosons:

3 bosons interactions	4 bosons interactions	5 bosons interactions
agg	aggg	$aW^+W^-\gamma\gamma$
a $\gamma\gamma$	$aW^+W^-\gamma$	$aW^+W^-Z\gamma$
aZZ	aW^+W^-Z	aW^+W^-ZZ
a $Z\gamma$		
aW^+W^-		

Example of a Feynman rule for the $aZ\gamma$ interaction vertex:

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ | = <) Q (
 University of Strasbourg - IPHC-PICSEL

Production at FCC-ee with $\sqrt{s} = 91$ **GeV (Z peak):** 3 possible diagrams at LO (Leading-Order) of the theory.

Involving 3 coupling constants: $C_{\gamma\gamma}/\Lambda$, $C_{\gamma Z}/\Lambda$ and C_{ZZ}/Λ .

Considering a same value for the C/Λ couplings, the first diagram is dominant because the Z is on-shell.

▲ □ ▶ < 团 ▶ < 필 ▶ < 필 ▶ < 필 ▶ < 필 ►
 ♥ O Q O
 University of Strasbourg - IPHC-PICSEL

	Theoretical context	Experimental context	Model phenomenology ○○○○○●○	Signature @ IDEA 00000000	References 00000
Axion d	ecay modes				

The decay modes of the axion (at LO) depend on its mass:

Decay mode	gg	ggg	$\gamma\gamma$	Zγ	ZZ	<i>W</i> ⁺ <i>W</i> ⁻
m _a (GeV)	any	any	any	> 91	> 182	> 160

Decay mode	$W^+W^-\gamma$	$W^+W^-\gamma\gamma$	W^+W^-Z	$W^+W^-Z\gamma$	W^+W^-ZZ
m_a (GeV)	> 160	> 160	> 251	> 251	> 342

Partial decay widths (at LO) have been derived. For example: $a \rightarrow gg$

$$\Gamma(a
ightarrow gg) = 32\pi lpha_s^2 m_a^3 rac{|C_{gg}|^2}{\Lambda^2}$$

MOUGIN Hugo, supervised by Eric Conte and Robin Ducrocq

∃ ► < ∃ ►</p> University of Strasbourg - IPHC-PICSEL

ELE SQC

Axions can appear also in exotic decays mode of MS particles.

For instance, decay mode $Z
ightarrow a\gamma$

MOUGIN Hugo, supervised by Eric Conte and Robin Ducrocq

а

z ~~~,```

◆ロ → ◆ 部 → ◆ 注 → ◆ 注 | = 少 Q ペ University of Strasbourg - IPHC-PICSEL

Theoretical context	Experimental context	Model phenomenology	Signature @ IDEA	References
			0000000	

1 Theoretical context

- 2 Experimental context
- **3** Phenomenological study of an extension of the Standard Model
- Simulation of the detector response with respect to a long-lived axion signature
- 6 Conclusion and perspective

6 References

University of Strasbourg - IPHC-PICSEL

ELE DOG

Signature @ IDEA Summary References 0000000

Choice of an experimental signature for the FCC-ee

- FCC-ee energy: Z production on mass shell.
- The Z boson can decay in axion-photon according to the coupling $C_{\gamma Z}/\Lambda$.
- We choose the decay mode of the axion in two gluons according to the coupling C_{gg}/Λ .
 - The decay mode of the axion in two photons has been already investigated in the FCC-ee community.
 - The 2 gluons will give two jets in the final state. The tracks of the charged particle contained in the jets can allow us to reconstruct the axion decay vertex.
- We would like a long-lived axion decaying in the detector volume.

MOUGIN Hugo, supervised by Eric Conte and Robin Ducroca

3 University of Strasbourg - IPHC-PICSEL

三日 のへの

	Theoretical context 000000	Experimental context	Model phenomenology	Signature @ IDEA	References 00000
Study c	of the signati	ure			

A first constraint on this process is the uncertainty on the experimentally-measured Z total-width which is know at 2.3 MeV.

Partial decay width of the Z boson in axion and photon :

MOUGIN Hugo, supervised by Eric Conte and Robin Ducrocq

University of Strasbourg - IPHC-PICSEL

Introduction 00	Theoretical context	Experimental context	Model phenomenology	Signature @ IDEA	Summary 000	References 00000
Study o	of the signati	ure				

We would like to reconstruct the axion decay vertex from the tracks coming the 2 jets. \rightarrow Instrumental constraint on the flight distance of the axion: IDEA radius \approx 6 m, vertex-detector resolution $\approx \mu m$.

The mean flight distance of the axion $\langle d_a \rangle$ in the detector frame can be computed from the decay width of the axion in gluon pair (considering BR=100%):

University of Strasbourg - IPHC-PICSEL

Introduction 00	Theoretical context	Experimental context	Model phenomenology	Signature @ IDEA ○○○○●○○○	Summary 000	References 00000	
Generat	tion and sim	ulation					

We generate events corresponding to the chosen signature:

- The Lagrangian density was already implemented in the program FEYNRULES.
- Using the programs MADGRAPH_AMC@NLO 5 and Pythia 8 to generate the Monte-Carlo events.
- Using the program DELPHES to simulate the response of the detector.
- No simulation of the beam noise (program GUINEAPIG).

Benchmarks definition:

- axion mass of 1 MeV, 3 MeV, 20 MeV.
- axion flight distance of 1 μ m, 1 cm, 1 m, 5 m.
- \rightarrow Producing 10,000 events sample for each benchmark.

Introduction Theoretical context Experimental context Model phenomenology Signature @ IDEA Summary References

First result on the detector response: photon reconstruction

Matching between generated photons coming from the Z decay and the reconstructed photons:

- Matching is achieved by choosing the closest reconstructed photon in the transverse plane.
- In other terms, minimizing the observable $\Delta R = \sqrt{\Delta \varphi^2 + \Delta \eta^2}$.

with the pseudo-rapidity $\eta = -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$

- Cut on ΔR : $\Delta R < 0.05$
- $\frac{Successful associations}{generated events}$ = photon reconstruction efficiency × matching efficiency = 0.99%.

< □ → < 回 → < Ξ → < Ξ → < Ξ → 三 = の Q @ University of Strasbourg - IPH<u>C-PICSEL</u> Introduction Theoretical context Experimental context Model phenomenology Signature @ IDEA Summary References 000000 First result on the detector response: photon reconstruction

Resolution on the photon energy: $\frac{\Delta E}{F\gamma}$

Estimated resolution on the photon energy: 1.8%, which is consistent with the calorimeter resolution $\frac{11\%}{\sqrt{E}}$ for the photon.

University of Strasbourg - IPHC-PICSEL

EL OQO

Introduction Theoretical context Experimental context Model phenomenology Signature @ IDEA Summary References 0000000 First result on the detector response: influence of the axion flight distance

Impact of the mean flight distance $\langle d_a \rangle$ on reconstructed observables:

mean flight distance $< d_a >$	$1~\mu$ m	1 m	5 m
ratio of axions decaying in the detector volume	100.0%	99.8%	69.9%
jet multiplicity ($p_T>20$ GeV)	1.8	1.8	1.8
missing transverse energy [GeV]	1.1	1.1	1.1

Results: the (fast-)simulation does not take care of the flight distance of the axion.

▲ □ ▶ < 团 ▶ < 필 ▶ < 필 ▶ < 필 ▶ < 필 ⊨ < 의 ♀ ○
 University of Strasbourg - IPHC-PICSEL

Theoretical context	Experimental context	Model phenomenology	Signature @ IDEA	Summary	References
				•00	

1 Theoretical context

- 2 Experimental context
- 3 Phenomenological study of an extension of the Standard Model
- G Simulation of the detector response with respect to a long-lived axion signature
- 5 Conclusion and perspective

6 References

Conclus	ion and ner	spective					
Introduction 00	Theoretical context	Experimental context	Model phenomenology	Signature @ IDEA 00000000	Summary 000	References 00000	

Exploring the axion physics at the FCC-ee collider

- Understanding the theoretical motivations of the QCD axion: consequence of the solution (Peccei-Quinn mechanism) to the strong CP violation problem.
- Performing a phenomenological study of an effective model extending the Standard Model by including an axion and its interactions:
 - Deriving the practical Feynman rules from the Lagrangian density (expressed with gauge states and before the electroweak symmetry breaking).
 - Investigating how the axion is produced at the FCC-ee in terms of cross-sections.
 - Caculating partial decay width corresponding to the two-body decays of the axion, and to the exotic decays of standard particles.
 - Checking that the results are consistent with the numerical predictions of the program FEYNRULES/MADGRAPH_AMC@NLO.

< □ → < 団 → < 重 → < 重 → < 重 → 三 = つへ (~ University of Strasbourg - IPHC-PICSEL

Conclusion and perspective

- Choosing an experimental signature to study: $e^+e^- \rightarrow Z \rightarrow \gamma a(\rightarrow gg)$ where the axion a can have a long flight distance before its decay.
- Estimating the detector IDEA sensibility to this signature:
 - Determining the interesting parameter region.
 - Generating Monte-Carlo events corresponding to the signal by using high-energy physics software.
 - Applying the fast-simulation of the detector IDEA.
 - · First results: consistent simulation for the photon reconstruction/identification where as long distance flight are not considered.

Perspective:

- Tuning the detector simulation for handling the flight distance of the axion
- Finalizing the sensitivity study by generating background events and extracting a signal/background ratio.
- Improving the simulation by including the beam noise (program GUINEAPIG).
- Finally, other signatures can be also studied. Example: $a \to \gamma \gamma$. •

Theoretical context	Experimental context	Model phenomenology	Signature @ IDEA	References
				00000

1 Theoretical context

- 2 Experimental context
- 3 Phenomenological study of an extension of the Standard Model
- ④ Simulation of the detector response with respect to a long-lived axion signature
- 6 Conclusion and perspective

	Theoretical context 000000	Experimental context	Model phenomenology	Signature @ IDEA 00000000	References 0●000
Ribliog	ranhy				

יאי

- C. B. Verhaaren et al Searches for long-lived particles at the future fcc-ee. 2022.
- I. Antcheva et al A c++ framework for petabyte data storage, statistical analysis and visualization. Computer Physics Communications, 180(12) :24992512, dec 2009.
- G. Bencivenni The -RWELL detector. Journal of Instrumentation, 12(06) :C06027C06027, jun 2017.
- I. Brivio at al ALPs effective field theory and collider signatures. The European Physical Journal C, 77(8), aug 2017
- Martin Bauer et al Axion-like particles at future colliders. The European Physical Journal C, 79(1), jan 2019.
- Martin Bauer, Matthias Neubert, and Andrea Thamm. Collider probes of axion-like particles. Journal of High Energy Physics, 2017(12), dec 2017 ミト ▲ ミト 三日日 のへの

	Theoretical context	Experimental context	Model phenomenology	Signature @ IDEA 00000000	References 00●00	
Ribliam	(anh)					

Bibliography

- FastJet user manual. The European Physical Journal C, 72(3), mar 2012.
- Chiral estimate of the electric dipole moment of the neutron in quantum chromosynamique. Physics Letters B, 1979.
- DELPHES 3 : a modular framework for fast simulation of a generic collider experiment. Journal of High Energy Physics, 2014(2), feb 2014.
- C.Amsler et al. Baryons. Physics Letters B, 2008
- A.Abada et al. Fcc-ee : The lepton collider : Future circular collider conceptual design report volume 2. The European Physical Journal, 2019
- Stephen D. H. Hsu. Physical consequences of the qed theta angle, 2010.
- Dmitri E. Kharzeev. Chern-simons current and local parity violation in hot QCD matter. Nuclear Physics A, nov 2009.

	Theoretical context 000000	Experimental context	Model phenomenology	Signature @ IDEA 00000000	References 000●0
Bibliogr	aphy				

- M.Antonello. Idea : A detector concept for future leptonic colliders. 2020.
- Roberto D. Peccei. The strong CP problem and axions. In Lecture Notes in Physics, pages 317. Springer Berlin Heidelberg, 2008.
- R.D.Peccei and Helen R.Quinn. Cp conservation in the presence of pseudoparticles*. Physical Review Letters, mar 1977.
- H. Spiesberger, M. Spira, and P. M. Zerwas. The standard model : Physical basis and scattering experiments, 2000.
- Steven Weinberg. A new light boson ? PHYSICAL REVIEW LETTERS, 1978
- Vacuum structure of the strong interaction with a peccei-quinn symmetry. nov 2008.

Introduction	Theoretical context	Experimental context	Model phenomenology	Signature @ IDEA	Summary	References
						00000

Thank you!

うてん 正則 スポッスポット 御子 ろうろ

MOUGIN Hugo, supervised by Eric Conte and Robin Ducrocq

University of Strasbourg - IPHC-PICSEL

35 / 49

Facteur :
$$-i4e^2 \frac{C_{\gamma\gamma}}{\Lambda} \epsilon^{\mu\nu\rho\sigma} p^1_{\mu} p^2_{\nu}$$

Facteur :
$$-i4g_s^2 \frac{C_{gg}}{\Lambda} \epsilon^{\mu\nu\rho\sigma} p_{\mu}^1 p_{\nu}^2$$

University of Strasbourg - IPHC-PICSEL

イロン イヨン イヨン イヨン

三日 のへで

▲ □ ▶ < 团 ▶ < 필 ▶ < 필 ▶ < 필 ▶ < 필 ⊨ < 의 ♀ ○
 University of Strasbourg - IPHC-PICSEL

Facteur :
$$-i4 \frac{e^2}{s_{\omega}^2 c \omega^2} \frac{C_{ZZ}}{\Lambda} \epsilon^{\mu\nu\rho\sigma}$$

$$\begin{array}{l} \mathsf{Facteur}: \quad -i8 \frac{g_W^3 s_\omega \mathsf{C}_{\mathsf{WW}}}{\Lambda} (p_\mu^{W^+} - p_\mu^{W^-} + p_\mu^{\gamma}) \epsilon^{\mu\nu\rho\sigma} \end{array}$$

< 🗗 >

MOUGIN Hugo, supervised by Eric Conte and Robin Ducrocq

University of Strasbourg - IPHC-PICSEL

ミト ▲ ミト 三日 つくぐ

 W^+, p^{W^+} a, p^a γ, p^{γ} Z, p^Z W^-, p^{W^-}

Facteur :
$$-i32g_W^4 s_\omega c_\omega \frac{C_{WW}}{\Lambda} \epsilon^{\mu\nu\rho\sigma}$$

Facteur :
$$-i32g_W^4 s_\omega^2 \frac{C_{WW}}{\Lambda} \epsilon^{\mu\nu\rho\sigma}$$

→ * 注→ University of Strasbourg - IPHC-PICSEL

三日 のへの

 W^+, p^{W^+} a, p^a $\sim Z, p^2$ -, p^{W-} Z, p W^{-}

Facteur :
$$-i32g_W^4 c_\omega^2 \frac{C_{WW}}{\Lambda} \epsilon^{\mu\nu\rho\sigma}$$

Facteur :
$$-i \frac{y_{f+f} - C_{a\Phi}}{f_a}$$

→ * 注→

< 🗗 >

三日 のへで

$$\begin{split} \mathcal{L}_{a\gamma\gamma} &= 2e^{2} \frac{C_{\gamma\gamma}}{\Lambda} a\epsilon^{\mu\nu\rho\sigma} \partial_{\mu}A_{\nu}\partial_{\rho}A_{\sigma} \\ \mathcal{L}_{aZZ} &= 2\frac{e^{2}}{s_{\omega}^{2}c\omega^{2}} \frac{C_{ZZ}}{\Lambda} a\epsilon^{\mu\nu\rho\sigma} \partial_{\mu}Z_{\nu}\partial_{\rho}Z_{\sigma} \\ \mathcal{L}_{aZ\gamma} &= 4\frac{e^{2}}{s_{\omega}c\omega} \frac{C_{\gamma}}{\Lambda} a\epsilon^{\mu\nu\rho\sigma} \partial_{\mu}A_{\nu}\partial_{\rho}Z_{\sigma} \\ \mathcal{L}_{agg} &= 2g_{s}^{2} \frac{C_{GG}}{\Lambda} a\epsilon^{\mu\nu\rho\sigma} \partial_{\mu}G_{\nu}^{A}\partial_{\rho}G_{\sigma}^{A} \\ \mathcal{L}_{aggg} &= 2g_{s}^{2} \frac{C_{GG}}{\Lambda} a\epsilon^{\mu\nu\rho\sigma} f_{BC}^{A}[-ig((\partial_{\mu}G_{\nu}^{A})G_{\rho}^{B}G_{\sigma}^{C} + G_{\mu}^{B}G_{\nu}^{C}(\partial_{\rho}G_{\sigma}^{A}))] \\ \mathcal{L}_{aW^{+}W^{-}} &= 2g_{W}^{2} \frac{C_{WW}}{\Lambda} a\epsilon^{\mu\nu\rho\sigma} (\partial_{\mu}W_{\nu}^{+}\partial_{\rho}W_{\sigma}^{-}) \\ \mathcal{L}_{aW^{+}W^{-}\chi} &= i8g_{W}^{3}s\omega \frac{C_{WW}}{\Lambda} a\epsilon^{\mu\nu\rho\sigma} [\partial_{\mu}W_{\nu}^{+})A_{\rho}W_{\sigma}^{-} - (\partial_{\mu}W_{\nu}^{-})A_{\rho}W_{\sigma}^{+} + W_{\mu}^{+}W_{\nu}^{-}\partial_{\rho}A_{\sigma}] \\ \mathcal{L}_{aW^{+}W^{-}Z} &= i8g_{W}^{3}c\omega \frac{C_{WW}}{\Lambda} a\epsilon^{\mu\nu\rho\sigma} [\partial_{\mu}W_{\nu}^{+})Z_{\rho}W_{\sigma}^{-} - (\partial_{\mu}W_{\nu}^{-})Z_{\rho}W_{\sigma}^{+} + W_{\mu}^{+}W_{\nu}^{-}\partial_{\rho}Z_{\sigma}] \\ \mathcal{L}_{aW^{+}W^{-}Z\gamma} &= 32g_{W}^{4}s_{\omega}^{2} \frac{C_{WW}}{\Lambda} a\epsilon^{\mu\nu\rho\sigma} [A_{\mu}W_{\nu}^{+}A_{\rho}W_{\sigma}^{-}] \\ \mathcal{L}_{W^{+}W^{-}ZZ} &= 32g_{W}^{4}s_{\omega}^{2} \frac{C_{WW}}{\Lambda} a\epsilon^{\mu\nu\rho\sigma} [Z_{\mu}W_{\nu}^{+}Z_{\rho}W_{\sigma}^{-}] \\ \end{split}$$

University of Strasbourg - IPHC-PICSEL

 $a \rightarrow \gamma \gamma$

$$iM = P_{\rho}^{r} P_{\sigma}^{s} \left(-4e^{2} \frac{C_{\gamma\gamma}}{\Lambda} \epsilon^{\mu\nu\rho\sigma} p_{\mu}^{1} p_{\nu}^{2}\right)$$
(1)

Avec P_{ρ}^{r} et P_{σ}^{s} les vecteurs polarisation où r et s sont les différentes polarisations possible. On nommera par la suite $C = -4e^{2}\frac{C_{\gamma\gamma}}{\Lambda}$. On peut donc exprimer $|M|^{2}$ en multipliant par le complexe conjugué :

$$|M|^{2} = |C|^{2} \epsilon^{\mu\nu\rho\sigma} \epsilon^{\mu'\nu'\rho'\sigma'} P_{\rho}^{r} P_{\rho'}^{r*} P_{\sigma}^{s} P_{\sigma'}^{s*} p_{\mu}^{1} p_{\nu}^{2} p_{\mu'}^{1} p_{\nu'}^{2}$$
(2)

$$|\bar{M}|^2 = \sum_{r,s} |M|^2$$
 (3)

$$\begin{split} |\bar{M}|^{2} &= \frac{1}{2} |C|^{2} \epsilon^{\mu\nu\rho\sigma} \epsilon^{\mu'\nu'}{}_{\rho\sigma} (-\eta_{\rho\rho'}) (-\eta_{\sigma\sigma'}) p_{\mu}^{1} p_{\nu}^{2} p_{\mu'}^{1} p_{\nu'}^{2} \\ &= |C|^{2} [\delta^{\mu\nu'} \delta^{\nu\mu'} - \delta^{\mu\mu'} \delta^{\nu\nu'}] p_{\mu}^{1} p_{\nu}^{2} p_{\mu'}^{1} p_{\nu'}^{2} \\ &= |C|^{2} [(p_{\mu}^{1} p^{2\mu}) (p_{\nu}^{1} p^{2\nu}) - (p_{\mu}^{1} p^{1\mu}) (p_{\nu}^{2} p^{2\nu})] . \end{split}$$
(4)

MOUGIN Hugo, supervised by Eric Conte and Robin Ducrocq

▲ □ ▶ < 团 ▶ < 필 ▶ < 필 ▶ < 필 ▶ < 필 ⊨ < 의 ♀ ○
 University of Strasbourg - IPHC-PICSEL

Sachant que les particules 1 et 2 sont des photons, $p_{\mu}^{1}p^{1\mu} = 0$ et $p_{\nu}^{2}p^{2\nu} = 0$. De plus, en se plaçant dans le référentiel de l'axion, c'est à dire du centre de masse, et en utilisant la conservation de la quantité de mouvement ainsi que de l'énergie, nous démontrons que $p_{\mu}^{1}p^{2\mu} = \frac{m_{a}^{2}}{2}$, avec m_{a} la masse de l'axion. Ainsi :

$$|\bar{M}|^2 = |C|^2 \frac{m_a^4}{4} .$$
 (5)

$$\Gamma_{i \to f} = \frac{p^*}{32\pi^2 m_a^2} \int |\bar{M}|^2 d\Omega \tag{6}$$

avec
$$p^* = \frac{1}{2m_a} \sqrt{[(m_a^2 - (m_1 + m_2)^2][m_a^2 - (m_1 - m_2)^2)]}$$
. (7)

$$\Gamma(a \to \gamma \gamma) = \frac{4\pi \alpha^2 m_a^3}{\Lambda^2} |C_{\gamma \gamma}|^2 \quad \text{avec} \quad \alpha = \frac{e^2}{4\pi}$$
(8)

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ | = <) Q (
 University of Strasbourg - IPHC-PICSEL

Fig 4: Energy of all the reconstructed photon per Delphes for a 10000 events sample (GeV).

MOUGIN Hugo, supervised by Eric Conte and Robin Ducrocq

-University of Strasbourg - IPHC-PICSEL

EL OQO

If we consider the Lagrangian density of the QED :

$$\mathcal{L}_{QED} = \bar{\Psi} i D^{\mu} \gamma_{\mu} \Psi - m \bar{\Psi} \Psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \quad \text{avec} \quad D^{\mu} = \partial^{\mu} - ieQA^{\mu}$$
(9)

We can add terms that are Lorentz en gauge invariant. It is possible to check that the following term own these properties.

$$\mathcal{L}_{\theta_{QED}} = -\frac{\theta_{QED}}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} \quad \text{avec} \quad \tilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma} \;. \tag{10}$$

Where $\epsilon^{\mu\nu\rho\sigma}$ is the anti-symmetric tensor.

University of Strasbourg - IPHC-PICSEL

ELE DOG

We can bring out the CP violation by re-shape the kinetics terms in term of electric and magetic Field

$$-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} = \frac{1}{2}(E^2 - B^2) , \quad -\frac{\theta_{QED}}{4}F_{\mu\nu}\tilde{F}^{\mu\nu} = \theta_{QED} \ \vec{E} \cdot \vec{B} \ (11)$$

-University of Strasbourg - IPHC-PICSEL

JI NOR

	ρ	ij	Ē	B	$-rac{1}{4}F_{\mu u}F^{\mu u}$	$-rac{ heta_{QED}}{4}F_{\mu u} ilde{F}^{\mu u}$
Т	+	-	+	-	+	-
С	-	-	-	-	+	+
Р	+	-	-	+	+	-
CP	-	+	+	-	+	-
TC	-	+	-	+	+	-
ΤP	+	+	-	-	+	+
СРТ	-	-	+	+	+	+

Table 1: Transformation of several observables of electromagnetism by the discrete transformations C, P and T, as well as by their combinations.

< ∃ > University of Strasbourg - IPHC-PICSEL

三日 のへで

The term θ can be written as a surface term. Indeed, by using the properties of the anti-symmetric tensor, the coupling can be put in the form of a total derivative :

$$\mathcal{L}_{\theta} = -\frac{\theta}{2} \partial_{\rho} [\epsilon^{\mu\nu\rho\sigma} A_{\sigma} \partial_{\mu} A_{\nu}]$$
(12)

This term does not contribute to the equations of motion of the free field by imposing that the field A_{μ} be suppressed at infinity. It does not contribute either to the perturbative interactions because these are expressed from the solutions of the free field.

University of Strasbourg - IPHC-PICSEL

- * ロ * * @ * * 注 * * 注 * 三日 * 9 < @

MOUGIN Hugo, supervised by Eric Conte and Robin Ducrocq

University of Strasbourg - IPHC-PICSEL