Theoretical Study of the QCD Phase Diagram at High Densities

Ugo Mire Supervisor: PD Dr. Bernd-Jochen Schaefer June 22, 2022

Justus-Liebig-Universität Giessen

1. Quantum Chromodynamics

2. Phase Structure of the Quark-Meson-Diquark model

3. Neutron Stars

Quantum Chromodynamics

		Boson		
mass	Up $2.2{ m MeV}$	$\begin{array}{c} Charm \\ 1.2 \mathrm{GeV} \end{array}$	Top 170 GeV	Gluon
mass	Down 4.7 MeV	Strange 96 MeV	Bottom 4.1 GeV	

		Boson		
	Up D D M - W	Charm	Top	Gluon
mass	2.2 Mev	1.2 GeV	170 Gev Bottom	
mass	$4.7\mathrm{MeV}$	96 MeV	4.1 GeV	

At low-energy QCD become hard \rightarrow non-perturbative.

At low-energy QCD become hard \rightarrow non-perturbative.

Confinement: Can only observe color-neutral particle.

At low-energy QCD become hard \rightarrow non-perturbative.

Confinement: Can only observe color-neutral particle.

Chiral symmetry breaking: Quarks are much more massive in the vacuum.

Chiral Condensate σ

 $\left<0\right|\overline{q}q\left|0\right>\neq0$

 $\left<0\right|\overline{q}q\left|0\right>\neq0$

 $\langle 0 \mid q^T q \mid 0 \rangle \neq 0$

Main idea: remove gluons from the theory and replace them by mesons and diquarks.

Meson and diquark can develop vacuum expectation values \rightarrow order parameter for the phases.

Phase Structure of the Quark-Meson-Diquark model

Goal: Compute the partition function Z.

1st method: Mean-field Approximation (MFA)

$$Z = \int \mathcal{D}\sigma \mathcal{D}\pi \mathcal{D}\Delta \mathcal{D}\bar{q}\mathcal{D}q \ e^{-\beta(H-\mu N)}$$

Goal: Compute the partition function Z.

1st method: Mean-field Approximation (MFA)

$$Z = \int \mathcal{D}\sigma \mathcal{D}\pi \mathcal{D}\Delta \mathcal{D}\bar{q}\mathcal{D}q \ e^{-\beta(H-\mu N)}$$

$$MFA$$

$$\downarrow$$

$$\sigma, \Delta \text{ and } \pi \text{ are found by minimising}$$
the thermodynamic potential

Goal: Compute the partition function Z.

1st method: Mean-field Approximation (MFA)

2nd method: Functional Renormalization Group (FRG)

 Take into account bosonic fluctuations in a non-perturbative way.

2nd method: Functional Renormalization Group (FRG)

- Take into account bosonic fluctuations in a non-perturbative way.
- Integrate fluctuations momentum-shell by momentum-shell.

2nd method: Functional Renormalization Group (FRG)

- Take into account bosonic fluctuations in a non-perturbative way.
- Integrate fluctuations momentum-shell by momentum-shell.
- Diquark not included yet but give insight into the importance of fluctuation.

Equation of State

Neutron Stars

Origin of a Neutron Star

Origin of a Neutron Star

Origin of a Neutron Star

neutron star

$$\frac{dp}{dr} = -\frac{(\epsilon(r) + p(r))[m(r) + 4\pi r^3 p(r)]}{r(r - 2Gm(r))}$$
$$\frac{dm}{dr} = 4\pi r^2 \epsilon(r)$$

Tolman-Oppenheimer-Volkoff Equation

Tolman-Oppenheimer-Volkoff Equation

Mass-radius Relationship

Tidal deformability λ : Ability of a star to deform under an external gravitational field.

Tidal deformability λ : Ability of a star to deform under an external gravitational field.

How to measure it:

Tidal Deformability

Summary and Outlook

Summary:

- Phase strucutre of the quark-meson-diquark model and results on neutron star observables.
- Maybe visible effect of diquarks with high coupling?
- Strong effect of mesonic fluctuations.

Summary and Outlook

Summary:

- Phase strucutre of the quark-meson-diquark model and results on neutron star observables.
- Maybe visible effect of diquarks with high coupling?
- Strong effect of mesonic fluctuations.

Outlook:

- Implement the FRG with diquarks.
- Build hybrid model of neutron star including neutrons.

Thank you!

$$\begin{split} \mathcal{L}_{\text{QMD}} &= \overline{q} \left(-i \not{\!\partial} - \mu \gamma^0 \right) q + g_m \overline{q} \left(\sigma + i \gamma_5 \vec{\pi} \cdot \vec{\tau} \right) q \\ &+ i g_\Delta \left(\Delta^* \overline{q} \gamma_5 \tau_2 \lambda_2 C \overline{q}^T + \Delta q^T C \gamma_5 \tau_2 \lambda_2 q \right) \\ &+ \frac{1}{2} (\partial_\mu \sigma) \left(\partial^\mu \sigma \right) + \frac{1}{2} (\partial_\mu \vec{\pi}) \left(\partial^\mu \vec{\pi} \right) + (\partial_\mu \Delta) \left(\partial^\mu \Delta^* \right) + U(\sigma, \vec{\pi}, \Delta) \end{split}$$

$$\mathcal{L}_{\text{QMD}} = \overline{q} \left(-i \not{\partial} - \mu \gamma^0 \right) q + g_m \overline{q} (\sigma + i \gamma_5 \vec{\pi} \cdot \vec{\tau}) q$$

$$+ ig_{\Delta} \left(\Delta^* \overline{q} \gamma_5 \tau_2 \lambda_2 C \overline{q}^T + \Delta q^T C \gamma_5 \tau_2 \lambda_2 q \right) \\ + \frac{1}{2} (\partial_{\mu} \sigma) \left(\partial^{\mu} \sigma \right) + \frac{1}{2} (\partial_{\mu} \vec{\pi}) \left(\partial^{\mu} \vec{\pi} \right) + (\partial_{\mu} \Delta) \left(\partial^{\mu} \Delta^* \right) + U(\sigma, \vec{\pi}, \Delta)$$

$$\mathcal{L}_{\text{QMD}} = \overline{q} \left(-i \not{\partial} - \mu \gamma^0 \right) q + g_m \overline{q} \left(\sigma + i \gamma_5 \vec{\pi} \cdot \vec{\tau} \right) q$$

Interaction quark-diquark

$$+ ig_{\Delta} \left(\Delta^* \overline{q} \gamma_5 \tau_2 \lambda_2 C \overline{q}^T + \Delta q^T C \gamma_5 \tau_2 \lambda_2 q \right)$$

$$+\frac{1}{2}(\partial_{\mu}\sigma)\left(\partial^{\mu}\sigma\right)+\frac{1}{2}(\partial_{\mu}\vec{\pi})\left(\partial^{\mu}\vec{\pi}\right)+(\partial_{\mu}\Delta)\left(\partial^{\mu}\Delta^{*}\right)+U(\sigma,\vec{\pi},\Delta)$$

$$\mathcal{L}_{\text{QMD}} = \overline{q} \left(-i \partial \!\!\!/ - \mu \gamma^0 \right) q + g_m \overline{q} \left(\sigma + i \gamma_5 \vec{\pi} \cdot \vec{\tau} \right) q$$

Interaction quark-diquark

$$+ ig_{\Delta} \left(\Delta^* \overline{q} \gamma_5 \tau_2 \lambda_2 C \overline{q}^T + \Delta q^T C \gamma_5 \tau_2 \lambda_2 q \right)$$

$$+\frac{1}{2}(\partial_{\mu}\sigma)(\partial^{\mu}\sigma)+\frac{1}{2}(\partial_{\mu}\vec{\pi})(\partial^{\mu}\vec{\pi})+(\partial_{\mu}\Delta)(\partial^{\mu}\Delta^{*})+U(\sigma,\vec{\pi},\Delta)$$

meson dynamics

$$\begin{aligned} \mathcal{L}_{\text{QMD}} &= \overline{q} \left(-i \eth - \mu \gamma^0 \right) q + g_m \overline{q} (\sigma + i \gamma_5 \overrightarrow{\pi} \cdot \overrightarrow{\tau}) q \\ \text{Interaction quark-diquark} \\ &+ i g_\Delta \left(\Delta^* \overline{q} \gamma_5 \tau_2 \lambda_2 C \overline{q}^T + \Delta q^T C \gamma_5 \tau_2 \lambda_2 q \right) \\ &+ \frac{1}{2} (\partial_\mu \sigma) \left(\partial^\mu \sigma \right) + \frac{1}{2} (\partial_\mu \overrightarrow{\pi}) \left(\partial^\mu \overrightarrow{\pi} \right) + \left(\partial_\mu \Delta \right) \left(\partial^\mu \Delta^* \right) \\ &+ U(\sigma, \overrightarrow{\pi}, \Delta) \\ &\text{meson dynamics} \end{aligned}$$