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Quantum Chromodynamics



QCD Particles

Fermion Boson

Up Charm Top Gluon
mass 2.2 MeV 1.2 GeV 170 GeV

Down Strange Bottom
mass 4.7 MeV 96 MeV 4.1 GeV
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Low-energy QCD

At low-energy QCD become hard → non-perturbative.

Confinement: Can only observe color-neutral particle.

baryon
(fermion)

meson
(boson)

Chiral symmetry breaking: Quarks are much more massive in the
vacuum.
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QCD Phase Diagram
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Order parameters of the phase diagram

〈0| qq |0〉 6= 0

Chiral Condensate σ

interaction give
rise to higher
effective mass
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Order parameters of the phase diagram

〈0| qq |0〉 6= 0

Chiral Condensate σ

〈0| qTq |0〉 6= 0

Diquark Condensate ∆

interaction give
rise to higher
effective mass

interaction give
rise to color-

superconductivity

effective model of the order parameters
quark-meson-diquark model
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The Quark-Meson-Diquark Model

Main idea: remove gluons from the theory and replace them by
mesons and diquarks.

g g −→ −→ meson or diquark

Meson and diquark can develop vacuum expectation values →
order parameter for the phases.
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Phase Structure of the
Quark-Meson-Diquark model



Mean-field Approximation

Goal: Compute the partition function Z .

1st method: Mean-field Approximation (MFA)

Z =

∫
DσDπD∆Dq̄Dq e−β(H−µN)

= e−βVΩ
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Functional Renormalization Group

2nd method: Functional Renormalization Group (FRG)

• Take into account bosonic fluctuations in a non-perturbative
way.

• Integrate fluctuations momentum-shell by momentum-shell.

• Diquark not included yet but give insight into the importance
of fluctuation.
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Phase Diagram
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Equation of State
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Neutron Stars



Origin of a Neutron Star

no more
hydrogen burn

star white dwarf
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Origin of a Neutron Star

white dwarf
to massive

no more
hydrogen burn

star white dwarf
neutron star

black holemaximum stable neutron star mass
depend on microscopic structure
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Tolman-Oppenheimer-Volkoff Equation

neutron star Tolman-Oppenheimer-Volkoff equation
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Tolman-Oppenheimer-Volkoff Equation

neutron star Tolman-Oppenheimer-Volkoff equation

Solve for a variety of central pressure
to obtain relation between mass and radius.

need microscopique
model
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Mass-radius Relationship
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Tidal Deformability

Tidal deformability λ: Ability of a star to deform under an external
gravitational field.

How to measure it:

NS
In a binary system

Gravitational waves
carry information on
tidal deformability

NS

NS
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Tidal Deformability
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Summary and Outlook

Summary:

• Phase strucutre of the quark-meson-diquark model and results
on neutron star observables.

• Maybe visible effect of diquarks with high coupling?
• Strong effect of mesonic fluctuations.

Outlook:

• Implement the FRG with diquarks.
• Build hybrid model of neutron star including neutrons.
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Thank you!
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The Quark-Meson-Diquark Model

Lagrangian of the model:
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The Quark-Meson-Diquark Model

Lagrangian of the model:

Quark dynamics Interaction quark-meson

Interaction quark-diquark

meson dynamics

meson and diquark
self interaction

diquark dynamics
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