Use Of A **Machine Learning** Algorithm For Real-time Detection Of **Gravitational Waves**

Master 2 PSA internship at IP2I

Outline

🖒 Introduction

Scientific And Technical Background

\land Data Generation

E Neural Network And Training

Results And Analysis

Introduction

- Context
- Goals

Introduction: Context

Gravitational Waves (GW)

- **Prediction** in 1916 by Albert Einstein
- First indirect-detection in 1974: Binary Pulsar (*Taylor-Hulse*)
- First **direct-detection** in 2015: LIGO interferometers

Current detection

- LIGO and Virgo interferometers
- Signal processing: **Matched Filtering** → Efficient but time-consuming
- **Increase in sensitivity**: ~1000 signals in Run 04

Future Detection

- **Einstein Telescope** → higher sensitivity, more signals
- **LISA Observatory** in space → signals with low masses
- **Machine Learning** (ML) → Faster detection and exotic signals
- Enable Multi-Messenger astronomy

Introduction: Goals

Evaluate	Classify Data in two classes: Signal+Noise & Noise			
the potential of ML for GW Detection	Generation of Data Sets			
	Implementation of a Convolutional Neural Network (CNN)			
	Optimization : Increase <i>sensitivity</i> and decrease <i>False Alarm Rate</i> (FAR)			
-	Find the best training			

Find the **best training**

Scientific And Technical Background

- Gravitational Waves
- Interferometers
- Matched Filter
- Machine Learning

Background: Gravitational Waves

Simplified approach: Gravito-electromagnetism

- Assumption by Heaviside 1893: **Finite propagation speed** for gravity $(=c) \rightarrow$ Weak fields
- Scalar and vector **potentials** $\Phi_g(\vec{R},t) = -G \sum_i \frac{m_i}{\left|\vec{R} \vec{r_i}\right|} \quad \vec{A_g}(\vec{R},t) = -\frac{G}{c^2} \sum_i \frac{m_i \vec{v_i}(t_{ri})}{\left|\vec{R} \vec{r_i}\right|}$
- Corresponding **fields** $\overrightarrow{E_g} = -\overrightarrow{\nabla} \Phi_g \frac{\partial \overrightarrow{A_g}}{\partial t} \quad \overrightarrow{B_g} = \overrightarrow{\nabla} \wedge \overrightarrow{A_g}$
- In the vacuum **propagation of waves** $\overrightarrow{\nabla^2} \overrightarrow{E_g} \frac{1}{c^2} \frac{\partial^2 \overrightarrow{E_g}}{\partial t^2} = 0$

• Gravitational Force $\overrightarrow{F_g} = m\left(\overrightarrow{E_g} + \vec{v} \wedge 4\overrightarrow{B_g}\right)$

Background: Gravitational Waves

Binary system

- Newtonian Approximation: $v_{a,b} \ll c$ and slightly distorted Minkowski metric
- System **losing Energy** $\frac{dE}{dt} = -P$
- Pulsation evolution

$$\omega(t) = \left(\frac{125}{128 \times N^3}\right)^{1/8} t_{SC}^{-5/8} (t_c - t)^{-3/8}$$

• Gravitational Wave signal in the detector

$$h(t) = \frac{\eta (GM)^{5/3} \omega^{2/3}(t)}{4Rc^4} \cos 2\Phi(t)$$

$$\Phi(t) - \left(\frac{2}{5}\right)^{5/8} \left(\frac{t_c - t}{t_{SC}}\right)^{5/8} + \Phi_c$$

Background: Interferometer

- Effect on a **mass system**
- Gertsenshtein and Pustovoit interferometer idea in 1962
- Signal **very weak** (proton size): A lot of noise

$$h(t) = \frac{\delta L}{L} \simeq 10^{-22}$$
$$\Leftrightarrow \delta L \simeq 10^{-18} m$$

 au_0

Background: Matched Filter

Data layout s(t) = h(t) + n(t)**Filtered signal** a(t $x(t) = \int_{-\infty}^{+\infty} \tilde{s}(f) \tilde{g}(f) e^{+2i\pi ft} df$ **Matched filter** $\tilde{g}(f) = 2 \frac{\tilde{h}^*(f)}{S_n(f)}$ $s(t+\tau_0)$ LIGO-Hanford LIGO-Livingston Virgo s(t) $S_n(f) = \lim_{T \to \infty} \frac{E[|\widetilde{n_T}(f)|^2]}{2T}$ Normalization constant 10^{-20} (Optimal SNR) $s(t-2\tau_0)$ Strain noise $\left[1/\sqrt{\text{Hz}}\right]_{10-51}$ $\rho_{opt}^2 = \langle x(t) x^*(t) \rangle$ $s(t-3\tau_0)$ $=4\int_0^\infty \frac{\left|\tilde{h}(f)\right|^2}{S_n(f)}df$ $\overline{x(t)} = \frac{|4|}{|S_n|} \int_0^\infty s |t'| h(t'-t) dt'$ $\rho(t) = \frac{|x(t)|}{c}$ 10^{-23} x(t) ρ_{opt} 10 100 1000 Frequency [Hz]

Regression

- Supervised learning principle
- Linear regression $\hat{y} = Xw + b$

- **Root mean square error** to be minimized $L(w,b) = \frac{1}{n} \sum_{i=1}^{n} l^{(i)}(w,b)$ with $l^{(i)}(w,b) = \frac{1}{2} (\hat{y}^{(i)} y^{(i)})^2$
- Analytical solution: Normal equations $w^* = (X^T X)^{-1} X^T y$
- Stochastic gradient descent algorithm

$$(w,b) \leftarrow (w,b) - \frac{\eta}{|\mathcal{B}_{k}|} \sum_{i \in \mathcal{B}_{k}} \partial_{(w,b)} l^{(i)}(w,b)$$

Classification

• **Classification model**: several parallel Linear Regressions

 $\hat{O} = XW + b$ $\hat{Y} = softmax(\hat{O})$

• **Softmax operation**: membership probability

$$\hat{y} = softmax(\hat{o})$$
 $\hat{y_k} = \frac{\exp(o_k)}{\sum_i \exp(o_i)}$

Maximization of the likelihood

$$P(Y|X) = \prod_{i=1}^{n} P(y^{(i)}|x^{(i)})$$

Multilayers Perceptrons

Multi-layered model adding intermediate layers

 $\hat{H} = \sigma (XW^{(1)} + b^{(1)})$ $\hat{O} = \hat{H}W^{(2)} + b^{(2)}$

- **Explosion** of the **number of parameters**
- Need to add non-linear activation functions

Convolution

- Principle of convolution: Taking into account the correlation
 between the data (temporal and/or spatial)
- → **reduce** the number of **parameters**

$$[H]_{k,l,s} = \sum_{a=-\Delta}^{\Delta} \sum_{b=-\Delta}^{\Delta} \sum_{i} [V]_{a,b,i,s} [X]_{k+a,l+b,i}$$

- **Multiple inputs**: choice of the number of kernels and the size
- **Multiple outputs**: As in multilayer networks
- Pooling layer

Data Generation

- First Data
- Whitening and colored noise

Data Generation: First Data

Data Generation: Whitening and colored Noise

Data Generation: Whitening and colored Noise

- Whitening to scale Data around unity
- **Colored** Gaussian Noise
- Analytic PSD
- Change in **signal shape**

Neural Network And Training

- Neural Network
- Hyper-parameters and SNR

NN And Training : Neural Network

- **Convolution layers** (kernel sizes=8,16,32)
- Pooling layers (kernel sizes=4)
- Activation functions: ReLU
- Stochastic Gradient Descent
- **Loss function**: SoftmaxCrossEntropyLoss

NN And Training : Hyper-parameters and SNR

• Two kinds of training and hyper-parameters to optimize

	Fix SNR		Decreasing SNR	
	Scalar	Interval	Scalar	Interval
$ ho_{opt}$	8	(10-6)	[36,24,16,12,8]	[(48-24),(36-16),(24-12),(16-8),(10-6)]
Epochs Table	[0,300]		[0,4,8,20,40,300]	
η	3.10 ⁻³			
$ \mathbf{B}_k $	250			
$Nb_B/template$	10			
Kind of PSD				flat

Results and Analysis

- Definitions and Metrics
- Example of training
- Training SNR Influence
- Learning-rate Influence
- Kind of Training Influence

Results and Analysis: Definitions and Metrics

10³

10⁰

Accuracy: % of correct classification **Sensitivity**: % of correct classification 10² among *Signal+Noise* sample Number False Alarm Rate (FAR): % of wrong classification among Noise sample 10¹ Threshold $x = [N_{sample} \times FAR]$ $p_{treshold} = p(x)$

Results and Analysis: Exemple of training

Results and Analysis: Training SNR Influence

- **300 epochs** and $l_r = 0.003$
- Decrease the SNR \rightarrow training harder
- Best Results for low SNR
- SNR too low \rightarrow convergence too slow

Results and Analysis: Learning-rate Influence

- **300 epochs** and Training *SNR* = **10**
- Increase the $l_r \rightarrow$ faster training
- Best Results for high l_r
- l_r too low \rightarrow convergence too slow
- l_r too high \rightarrow oscillations and overfit

Results and Analysis: Kind of Training Influence

Results and Analysis: Kind of Training Influence

Best Training: Decrease and interval SNR

- Interval & Data change → Limitation of overfit
- Higher SNR access & Start very High SNR
 No first plateau
- Lower SNR access & End very low SNR
 → Better sensitivity

Conclusion

- Synthesis
- Outlook

Conclusion: Synthesis

- Great **potential** for **ML detection** but **more Statistics** needed
- Big **importance** of **learning rate** and training SNR
- Best Training: Interval decreasing SNR
- **100% sensitivity** (for 0.5% FAR) for **SNR>=8**
- Importance of SNR repartition

Conclusion: Outlook

Data Generation

- Numerical relativity signals (with merger)
- Optimal template Bank
- Several Φ_c
- Long signals (before merger)

Neural Network

- Use of GPUs
- Add of a new class (glitch)
- Estimator for mass parameters: delete softmax and use mass labels

Training and Results

- Have for statistics
- Evolving Learning-rate
- Testing NN on exotic signals (spin precession)

Thank you !

Back-up : Tools

Back-up : Relativité générale

Propagation dans le vide: similaire aux ondes EM

$$\Box \bar{h}_{\mu\nu} = 0 \iff (\nabla^2 - \frac{\partial^2}{\partial t^2})h_{\mu\nu} = 0$$

Origine: masses accélérées, moment quadripolaire

$$\bar{h}_{\mu\nu}(\mathbf{x},t) = -\frac{4G}{c^4} \int_{source} \frac{T_{\mu\nu}(\mathbf{x}',t-\frac{|\mathbf{x}-\mathbf{x}'|}{c})}{|\mathbf{x}-\mathbf{x}'|} \qquad \bar{h}_{ij}(t) = \frac{2G}{rc^4} \frac{d^2 I_{ij}(t-R/c)}{dt^2}$$

Système binaire: Calcul dans le cadre de l'EM (polarisation x)

$$h(t) = \frac{\eta(GM)^{5/3}\omega^{2/3}(t)}{4Rc^4}\cos 2\Phi(t)$$

$$\Phi(t) = \int_{t_0}^t \omega(u) du = -(\frac{2}{5})^{5/8} (\frac{t_c - t}{t_{SC}})^{5/8} + \Phi_c$$

Back-up : Kind of Noise Influence

- Same total SNR
- Different SNR distribution
- Higher maximum of signal for colored noise than flat noise
- Neural Network recognizes better a high expected value shift in few distributions than a weak expected value shift in many distributions

