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 Context

 Goals



Introduction: Context

Gravitational Waves (GW)

 Prediction in 1916 by Albert Einstein

 First indirect-detection in 1974: Binary Pulsar (Taylor-Hulse)

 First direct-detection in 2015: LIGO interferometers 
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Current detection

 LIGO and Virgo interferometers

 Signal processing: Matched Filtering → Efficient but time-consuming 

 Increase in sensitivity: ~1000 signals in Run O4

Future Detection

 Einstein Telescope → higher sensitivity, more signals

 LISA Observatory in space → signals with low masses

 Machine Learning (ML) → Faster detection and exotic signals

 Enable Multi-Messenger astronomy



Introduction: Goals
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Evaluate 
the 
potential 
of ML for 
GW 
Detection

Classify Data in two classes: Signal+Noise & Noise

Generation of Data Sets

Implementation of a Convolutional Neural Network (CNN)

Optimization: Increase sensitivity and decrease False Alarm Rate (FAR) 

Find the best training



Scientific And Technical Background
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 Gravitational Waves

 Interferometers

 Matched Filter

 Machine Learning



Background: Gravitational Waves

Simplified approach: Gravito-electromagnetism

 Assumption by Heaviside 1893: Finite propagation speed for gravity (=c) →Weak fields

 Scalar and vector potentials

 Corresponding fields

 In the vacuum propagation of waves

 Gravitational Force
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Background: Gravitational Waves

Binary system

 Newtonian Approximation: and slightly distorted Minkowski metric

 System losing Energy 

 Pulsation evolution

 Gravitational Wave signal in the detector
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Background: Interferometer

 Effect on a mass system

 Gertsenshtein and Pustovoit interferometer 
idea in 1962

 Signal very weak (proton size): A lot of noise
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Background: Matched Filter

 Matched filter
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Background: Machine Learning
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Regression

 Supervised learning principle

 Linear regression

 Root mean square error to be minimized

 Analytical solution: Normal equations

 Stochastic gradient descent algorithm
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Background: Machine Learning
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Classification

 Classification model: several parallel Linear Regressions

 Softmax operation: membership probability

 Maximization of the likelihood
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Background: Machine Learning
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Multilayers Perceptrons
 Multi-layered model adding intermediate layers

 Explosion of the number of parameters

 Need to add non-linear activation functions

𝐻 = σ 𝑋𝑊 1 + 𝑏 1 𝑂 = 𝐻𝑊 2 + 𝑏 2

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑥 =
1

1 + exp −𝑥
𝑅𝑒𝐿𝑈 𝑥 = max 0, 𝑥



Background: Machine Learning
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Convolution
 Principle of convolution: Taking into account the correlation 
between the data (temporal and/or spatial)

→ reduce the number of parameters 

 Multiple inputs: choice of the number of kernels and the size

 Multiple outputs: As in multilayer networks

 Pooling layer

𝐻 𝑘,𝑙,𝑠 =
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Δ
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Δ


𝑖
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Data Generation
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 First Data

 Whitening and colored noise



Data Generation: First Data

21/06/2022LARBI IDRISS 16

 White Gaussian Noise

 1s signals with 𝑚1 ≥ 𝑚2

 Template Normalization ℎ𝑛𝑜𝑟𝑚 𝑡 =
ℎ 𝑡

ρ𝑜𝑝𝑡

𝒇𝒆 𝑻𝒕𝒐𝒕 𝑫 𝒕𝒄 𝚽𝒄 𝒇𝑫𝒎𝒊𝒏 𝑵𝒃𝑩/𝒕𝒆𝒎𝒑𝒍𝒂𝒕𝒆 𝑴𝒂𝒔𝒔𝒆𝒔

2048 𝐻𝑧 1𝑠 1𝑀𝑝𝑐 .75, . 95 𝑠 0 20𝐻𝑧 10 10,50 𝑀⊙



Data Generation: Whitening and colored Noise
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 Whitening to scale Data 
around unity

 Colored Gaussian Noise

 Analytic PSD

 Change in signal shape 



Data Generation: Whitening and colored Noise
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 Whitening to scale Data 
around unity

 Colored Gaussian Noise

 Analytic PSD

 Change in signal shape 



Neural Network And Training
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 Neural Network

 Hyper-parameters and SNR



NN And Training : Neural Network
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 Convolution layers (kernel sizes=8,16,32)

 Pooling layers (kernel sizes=4)

 Activation functions: ReLU

 Stochastic Gradient Descent

 Loss function: SoftmaxCrossEntropyLoss



NN And Training : Hyper-parameters and SNR
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 Two kinds of training and hyper-parameters to optimize

Fix SNR Decreasing SNR

Scalar Interval Scalar Interval

𝜌𝑜𝑝𝑡 8 (10-6) [36,24,16,12,8] [(48-24),(36-16),(24-12),(16-8),(10-6)]

Epochs Table [0,300] [0,4,8,20,40,300]

𝜂 3.10−3

|Β𝑘| 250

𝑁𝑏𝐵/𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 10

Kind of PSD flat



Results and Analysis

21/06/2022LARBI IDRISS 22

 Definitions and Metrics

 Example of training

 Training SNR Influence

 Learning-rate Influence

 Kind of Training Influence



Results and Analysis: Definitions and Metrics
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 Accuracy: % of correct classification

 Sensitivity: % of correct classification 

among Signal+Noise sample

 False Alarm Rate (FAR): % of wrong 

classification among Noise sample

 Threshold

𝑥 = Nsample × 𝐹𝐴𝑅

𝑝𝑡𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑝(𝑥)



Results and Analysis: Exemple of training
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 First plateau

 Significant improvement

 Last plateau

 Overfit 

 Oscillations



Results and Analysis: Training SNR Influence
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 300 epochs and 𝒍𝒓 = 𝟎. 𝟎𝟎𝟑

 Decrease the SNR → training harder

 Best Results for low SNR

 SNR too low → convergence too slow



Results and Analysis: Learning-rate Influence
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 300 epochs and Training 𝑺𝑵𝑹 = 𝟏𝟎

 Increase the 𝑙𝑟→ faster training

 Best Results for high 𝑙𝑟

 𝑙𝑟 too low → convergence too slow

 𝑙𝑟 too high → oscillations and overfit



Results and Analysis: Kind of Training Influence

21/06/2022LARBI IDRISS 27

Fix < Decrease SNR 

 Data change → Limitation of overfit 

 Start Higher SNR → Limitation of first plateau

 End Lower SNR → Better Sensitivity

Scalar < Interval SNR 

 Lower SNR access → Better sensitivity

 Interval → Limitation of overfit 

 Higher SNR access → Limitation of first plateau



Results and Analysis: Kind of Training Influence
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Best Training: Decrease and 
interval SNR 

 Interval & Data change → Limitation of 
overfit 

 Higher SNR access & Start very High SNR 
→ No first plateau

 Lower SNR access & End very low SNR 
→ Better sensitivity



Conclusion
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 Synthesis

 Outlook



Conclusion: Synthesis
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 Great potential for ML detection but more Statistics needed

 Big importance of learning rate and training SNR

 Best Training: Interval decreasing SNR

 100% sensitivity (for 0.5% FAR) for SNR>=8

 Importance of SNR repartition



Conclusion: Outlook
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Data Generation

 Numerical relativity signals (with merger)

 Optimal template Bank 

 Several Φ𝑐

 Long signals (before merger)

Neural Network

 Use of GPUs

 Add of a new class (glitch)

 Estimator for mass parameters: delete 
softmax and use mass labels

Training and Results

 Have for statistics

 Evolving Learning-rate

 Testing NN on exotic signals (spin 
precession)



Thank you !
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Back-up : Tools
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Data Generation

Plotting Results

Programming Language

Development platform

ML incubator



Back-up : Relativité générale
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Propagation dans le vide: similaire aux ondes EM

Origine: masses accélérées, moment quadripolaire

Système binaire: Calcul dans le cadre de l’EM (polarisation x)



Back-up : Kind of Noise Influence
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 Same total SNR

 Different SNR distribution

 Higher maximum of signal for 
colored noise than flat noise

 Neural Network recognizes better a 
high expected value shift in few
distributions than  a weak expected 
value shift in many distributions


