

de physique et ingénierie

Université de Strasbourg

Improvement of the $H \rightarrow bb$ mass reconstruction with a kinematic fit

Master 2 Subatomic and Astroparticle Physics defence

Under the guidance of Maxime Gouzevitch

22/06/2022

Elise Jourd'huy

Table of contents _____

I. The Higgs boson self-coupling constant

II. Experimental realities

III. The kinematic fit

IV. Results

I. The Higgs boson self-coupling constant

CMS

Compact Muon Solenoid is one of the 4 *Large Hadron Collider* (LHC) experiments at CERN. This international collaboration aims to study, among other things, the parameters of the standard model.

The Higgs boson

The BEH mechanism

The self-coupling constant λ

II. Experimental realities

Higgs bosons pair production at CMS

Aim of the internship

HH never observed to this day \Rightarrow limits on $\kappa_{\lambda} = \frac{\lambda}{\lambda_{SM}} \in [-3.3, 8.5]$

- Photons well reconstructed
- Need both photons and b jets to observe a HH signal
- The **b** jets reconstruction is a limiting factor
- Need to improve the Signal to Noise Ratio for b jets

Improving the b jets reconstruction with a kinematic fit

III. The kinematic fit

Data processing chain

Kinematic fit : principle

<u>Initially</u>: Missing transverse energy due to **misreconstructions** and **neutrinos**

Parametrization of a simulation

Use of the KinFitter package

IV. Results

1st Observations (1)

HHbbggMVA >0.5 : "score" obtained by the event representing its chance of not being part of the background **mbbNu>0** : if > 0 the b jets were matched with the generated b jets. Can be considered as "reality".

Dijet invariant mass reconstruction seems to improve

1st Observations (2)

1st Observations (3)

System tuning

SumExtra+MET was entirely modelized by generic functions \rightarrow Tuning the system by variating their uncertainties

Results obtained for $\sigma^{SumExtra} \times 3$

Pulls of the tuned system

A more "realistic" mass

A more "realistic" mass

A more "realistic" mass

Conclusion ====

- The kinematic fit improves the dijet invariant mass reconstruction but not the photon invariant mass one : We can keep m_{bb}^{fit} and $m_{\gamma\gamma}^{ini}$ if no correlation is found between the two distributions
- Problem in the definition of the system uncertainties, but the obtained results are still logic

— What comes next ? —

- > Applying the kinematic fit to a simulation with registered hadronic contributions
- Updating the uncertainties
- > Checking the m_{bb}^{fit} and $m_{\gamma\gamma}^{ini}$ correlation
- Verifying that no observation bias was introduced
- > Applying the kinematic fit on real data (from Run II)

Outlook _____ **Improvement of the dijet reconstruction** LHC Run III (2022-2025) More statistics and improvement of the analysis's performances **Higher Signal to Noise Ratio of the** invariant mass distribution \Rightarrow Thesis Lower limits on the $HH \rightarrow b\overline{b}\gamma\gamma$ production cross-section Better constraints on λ

Thank you for your attention !

State of the research

HH Production at CMS (1)

% restants

HH Production atCMS (2)

 \boldsymbol{q}

q

= Uncertainties ===

$$\sigma_{E_t}^2 = a^2 + b^2 E_t + c^2 E_t^2 \quad \text{with} \quad a, b, c = \begin{cases} 5.6, 1.25, 0.033 & \text{if } |\eta| < 1.4 \\ 4.8, 0.89, 0.043 & \text{else} \end{cases}$$

$$\sigma_{\phi}^{2} = \frac{a}{E_{t}^{2}} + \frac{b}{E_{t}} + c \qquad \text{with} \qquad \text{a, b, c} = \begin{cases} 6.65, 0.04, 8.49 \times 10^{-5} & \text{if} & |\eta| < 1.4 \\ 2.908, 0.021, 2.59 \times 10^{-4} & \text{else} \end{cases}$$

Invariant mass without MVA & matching

Invariant mass without MVA & matching

Elise Jourd'huy – M2 PSA defence

Invariant mass without MVA & matching

$= \chi^2$ of the final system =

The BEH mechanism

 $=HH
ightarrow b\overline{b}\gamma\gamma ===$

Table 17.1 The predicted branching ratios of the Higgs boson for $m_{\rm H} = 125$ GeV.					
Branching ratio					
57.8%					
21.6%					
6.4%					
8.6%					
2.9%					
2.7%					
0.2%					

Thomson, M. (2013). *Modern Particle Physics*

Cross-sections (1)

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV
ggF HH	$31.05^{+2.2\%}_{-5.0\%}\pm3.0\%$	$36.69^{+2.1\%}_{-4.9\%}\pm3.0\%$	$139.9^{+1.3\%}_{-3.9\%}\pm2.5\%$	$1224^{+0.9\%}_{-3.2\%}\pm2.4\%$
VBF HH	$1.73^{+0.03\%}_{-0.04\%}\pm2.1\%$	$2.05^{+0.03\%}_{-0.04\%}\pm2.1\%$	$8.40^{+0.11\%}_{-0.04\%}\pm2.1\%$	$82.8^{+0.13\%}_{-0.04\%}\pm2.1\%$
ZHH	$0.363^{+3.4\%}_{-2.7\%}\pm1.9\%$	$0.415^{+3.5\%}_{-2.7\%}\pm1.8\%$	$1.23^{+4.1\%}_{-3.3\%}\pm1.5\%$	$8.23^{+5.9\%}_{-4.6\%}\pm1.7\%$
W ⁺ HH	$0.329^{+0.32\%}_{-0.41\%}\pm2.2\%$	$0.369^{+0.33\%}_{-0.39\%}\pm2.1\%$	$0.941^{+0.52\%}_{-0.53\%}\pm1.8\%$	$4.70^{+0.90\%}_{-0.96\%}\pm1.8\%$
W ⁻ HH	$0.173^{+1.2\%}_{-1.3\%}\pm2.8\%$	$0.198^{+1.2\%}_{-1.3\%}\pm2.7\%$	$0.568^{+1.9\%}_{-2.0\%}\pm2.1\%$	$3.30^{+3.5\%}_{-4.3\%} \pm 1.9\%$
t <i>ī</i> HH	$0.775^{+1.5\%}_{-4.3\%}\pm3.2\%$	$0.949^{+1.7\%}_{-4.5\%}\pm3.1\%$	$5.24^{+2.9\%}_{-6.4\%}\pm2.5\%$	$82.1^{+7.9\%}_{-7.4\%}\pm1.6\%$
tjHH	$0.0289^{+5.5\%}_{-3.6\%}\pm4.7\%$	$0.0367^{+4.2\%}_{-1.8\%}\pm4.6\%$	$0.254^{+3.8\%}_{-2.8\%}\pm3.6\%$	$4.44^{+2.2\%}_{-2.8\%}\pm2.4\%$

Reviews in Physics (2020) 100045

Cross-sections (2)

Electroweak phase transition

Modèle standard

•Eur.J.Phys. 38 (2017) 6, 065404

The BEH mechanism

