

Measurements and dosimetry of secondary neutrons for medical and industrial accelerators

Intern : Jonathan COLLIN

Date : 21/02/22 - 15/07/22 Tutors : Nicolas ARBOR & Marie VANSTALLE

Particle accelerators for society

• Hadrontherapy :

Computed doses only for tumoral regions and few centimetres away

Secondary neutrons are **not taken** into account in the computations of « out-of-field dose »

• Sterilization using X-rays :

Activation computation not done for secondary neutrons

Access to produced neutrons distribution via Monte Carlo tools

• Monte Carlo methods:

Based on probabilistic technics and high numbers of events, those algorithms allow to estimate possible results of a probabilistic event.

In this situation, allow to numerically reproduce radiation/matter interactions

- GATE :
 - **Opensource** software based on **Geant4**
 - Born of an international collaboration of 25 institutes, IPHC among them
 - Dedicated in numerical simulations in medical imaging and radiotherapy

• Goal :

Create a **mapping tool** of **neutrons** for an irradiation room using **Monte Carlo** code, personalized for each accelerators, rooms, ...

Extension of GATE - functionnality

• Add the possibility to modify isotopic composition of materials

Old material table :

```
1 [Elements]
2 C: S= C ; Z= 6. ; A= 12.01 g/mole
3
4 [Materials]
5 CNat: d=2.1 g/cm3; n=1; state=solid
6 +el: name=C; n=1
```

Only natural material available

New material table :

```
1 [Isotopes]
         Z=6 ; N=12 ; A= 12.0000000 g/mole
2 C12:
3 C13: Z=6 ; N=13 ; A= 13.00335483507 g/mole
4 C14:
         Z=6 ; N=14 ; A= 14.0032419884 g/mole
6 [Elements]
7 C: S= C ; Z= 6. ; A= 12.01 g/mole
s C12: n=1 : S = C12
     +iso: name=auto ; f=1
10 C13:
      n=1 ; S= C13
     +iso:
             name=auto ; f=1
11
12 C14:
         n=1
                : S= C14
             name=auto ; f=1
     +iso:
13
14
15 [Materials]
16 CNat: d=2.1 g/cm3; n=1; state=solid
     +el: name=C; n=1
17
18
19 CMod: d=2.1 g/cm3; n=3; state=solid
     +el: name=C12; f=0.7
20
21 +el: name=C13; f=0.2
                                Personalized
     +el: name=C14; f=0.1
22
                                  material
```

4

Extension of GATE - benchmark

- Creation of a « benchmark » allowing to validate functionnality through software updates
 - Comparison of production rate between natural carbon and pure carbon isotope target
 - Use of a KillActor

Total crossection of (γ, n) reaction for 12C and 13C

modelled in the benchmark

Automatic meshing - idea

- Step 1 : room voxelization
 - Step 2 : for each volume, association to a detector

Automatic meshing - behaviour

vox Room-0:

Automatic meshing - optimization

« Software » approach

- $\circ~$ File-writting \rightarrow 20-30% of time optimization
- Parallelisation : (i) 1800 1400 1200 0 2 4 6 8 10 12 14 16 18

Thread number

« Physics » approach

- $\circ~$ Particles elimination \rightarrow 10 % speed loss
 - But associated with process deactivation → 15% gain
- Energy cuts → amelioration up to a factor of 4
 ...
- \circ Removal of air in the room \rightarrow factor 4 gain
- Modification of isotopic composition

 \rightarrow up to 1/(isotopic fraction)

example : up to 10,000 when considering 2H

0 ...

 $E_n > 50 \; MeV$

Digital tool limitations

Simulations very sensitive to :

- Considered models of physics
- Volumes geometry
- Considered materials

Quantitative comparison of measured and simulated summed γ-ray emission spectrum from about 0.5 MeV-7 MeV for the full absorption PMMA measurement [A. Schumann et al., Physics in Medicine and Biology (2015)]

Experimental measurements allowed by DeSIs-developed device :

 Real-time fast and thermal neutron detector AlphaRad (quasi transparency to photons, small-sized, small energy requirements)

Convolution of resulting map with AlphaRad efficiency :

 Draft of measurements protocols associating the developed tool and detectors for validation of the tool

Application to partner platforms

Experimental irradiation platform : **FEERIX**

• Real geometry:

• GATE modelling :

Merci de votre attention

Modelling FEERIX platform

No agreement between MCNP, GATE/Geant4 and PENELOPE for X-ray spectrum :

Annexe : exemple code GATE

# # Geometry		<pre># Physics part one #</pre>									
<pre># /gate/geometry/setMaterialDatabase> #</pre>	{data}/GateMaterials.db	<pre>/gate/physics/addPhysicsList {phyList} /control/execute {mac}/{phyFile_I}.mac</pre>									
<pre>#World # /gate/world/setMaterial /gate/world/geometry/setXLength /gate/world/geometry/setYLength</pre>	{MatWorld} 260 cm 260 cm	# # Actors # #Phase_Space									
<pre>/gate/world/geometry/setYLength /gate/world/geometry/setZLength #Room # /gate/world/daughters/name /gate/world/daughters/insert /gate/Room/geometry/setXLength /gate/Room/geometry/setZLength /gate/Room/placement/setTranslation /gate/Room/setMaterial</pre>	330 cm Room box 220 cm 220 cm 290 cm 0 0 0 cm {MatRoom} 1	<pre>/gate/actor/addActor PhaseSpaceActor /gate/actor/phaseSpace1/save /gate/actor/phaseSpace1/enableEkine /gate/actor/phaseSpace1/enableYPosition /gate/actor/phaseSpace1/enableYDosition /gate/actor/phaseSpace1/enableYDirection /gate/actor/phaseSpace1/enableYDirection /gate/actor/phaseSpace1/enablePToductionVolume /gate/actor/phaseSpace1/enableProductionVolume /gate/actor/phaseSpace1/enableProductionProcess /gate/actor/phaseSpace1/enableParticleName /gate/actor/phaseSpace1/enableParticleName /gate/actor/phaseSpace1/enableParticleName /gate/actor/phaseSpace1/enableWeight</pre>	<pre>phaseSpace1 {output}/{filePS} Det true true false false false true true true true true true true tru</pre>								
/gate/Room/vis/setColor	white	<pre>#Particles_statistics # /gate/actor/addActor SimulationStatisticActo /gate/actor/stat/save {output}/{fileStat}</pre>	r» stat								

#	
<pre># Initialization</pre>	
#	
/gate/run/initialize	
#======================================	
# Beam	
#======================================	
/gate/source/addSource	pBeam gps
/gate/source/pBeam/gps/particle	proton
/gate/source/pBeam/gps/ene/type	Mono
/gate/source/pBeam/gps/energy	65 MeV
/gate/source/pBeam/gps/pos/type	Volume
/gate/source/pBeam/gps/pos/shape	Cylinder
/gate/source/pBeam/gps/pos/centre	0 0 -85 cm
/gate/source/pBeam/gps/pos/radius	2 cm
/gate/source/pBeam/gps/pos/halfz	0.1 cm

/gate,	/source/pe	eam/gps/di	rection	001	
#===== # Phys	sics part	two			
/conti	rol/execut	e {mac}/{p	hyFile_II	}.mac	
#===== # Mai	n program				
#=====					
#\ #\ #	/isualisat	ion			
/cont	r <mark>ol/if</mark> {b\	(isu} == 1	{mac}/visu	u_I.mac	
# #	Random				
/gate, /gate,	/random/se /random/se	tEngineNam tEngineSee	ne Mersenne ed auto	eTwister	
#	Start				

#																			
#-	 -	 	 _	 	 -	-	-	-	_	_	 	 -	-	-	-	-	-	-	

/gate/application/setTotalNumberOfPrimaries {nbPart} /gate/application/start

Annexe : spectre neutrons typique

Annexe : l'AlphaRad

Avantages principaux

- Transparent aux Ο photons
- Compact Ο
- Faible Ο consommation
- Vitesse de lecture Ο

64x64 micro-diodes

Annexe : Télescope à protons de reculs

Annexe : seuil de production de photoneutrons

