CORSIKA8 Simulations

Standard simulations

Boson cascade simulation

Conclusion 000

INVESTIGATE EXOTIC HIGH-ENERGY PHYSICS SCENARIOS IN AIR SHOWERS WITH CORSIKA 8 Internship M2/Mag3

> Marius Bertrand Tutor: Dr. Ralf Ulrich

Internship done at KIT in Karlsruhe (100% remote) from May 2020 to September 2020 included.

High energy boson cascade 00	CORSIKA8 Simulations	Standard simulations	Boson cascade simulation	Conclusion 000
Contents				

- High energy boson cascade
- 2 CORSIKA8 Simulations
 - "In" parameters
 - "Out" parameters
- 3 Standard simulations
 - Own research
 - Focus on X_{max}
 - Focus on the muon production
- 4 Boson cascade simulation

5 Conclusion

High energy boson cascade ●0	CORSIKA8 Simulations	Standard simulations	Boson cascade simulation	Conclusion 000
Contents				

- 2 CORSIKA8 Simulations
 - "In" parameters
 - "Out" parameters
- 3 Standard simulations
 - Own research
 - Focus on X_{max}
 - Focus on the muon production
- 4 Boson cascade simulation

5 Conclusion

CORSIKA8 Simulations

Standard simulations

Boson cascade simulation

Conclusion 000

The physics of high scattering boson cascade

Air shower : Cosmic ray entering the atmosphere yielding to a multitude of scattered particles decaying more and more.

< ロ > < 同 > < 回 > < 回 >

- Cosmic rays reach 1e14 to 1e19 eV LHC is 1e13eV as a comparison
- Bad side : Not controled
- Use CORSIKA to simulate showers
- Air shower is a tool to test "higgsplosion" theory

High energy boson cascade 00	CORSIKA8 Simulations	Standard simulations	Boson cascade simulation	Conclusion
Contents				

- 2 CORSIKA8 Simulations
 - "In" parameters
 - "Out" parameters

3 Standard simulations

- Own research
- Focus on X_{max}
- Focus on the muon production
- 4 Boson cascade simulation

5 Conclusion

	000	000000000000000000000000000000000000000	000	000		
"In" parameters						

• Particle type : Hadron (lighter than $\frac{56}{26}Fe$)

PERIODIC TABLE OF THE ELEMENTS

- Energy (1e14-1e19eV)
- Angle (0=zenit)
- Physical model of computation (Sybill)

High	energy	boson	cascade

CORSIKA8 Simulations

Standard simulations

Boson cascade simulation 000

Conclusion 000

"Out" parameters

Measuring cosmic-ray and gamma-ray air showers

(C) 1999 K. Becslöhr

- Study the evolution of the shower across the air (X_{max})
- Study the particle hitting the ground. (more precise but past is lost) particle type, energy, position

CORSIKA8 Simulations

Standard simulations

Boson cascade simulation 000

Conclusion

Contents

- High energy boson cascade
- 2 CORSIKA8 Simulations
 - "In" parameters
 - "Out" parameters
- 3 Standard simulations
 - Own research
 - Focus on X_{max}
 - Focus on the muon production
- ④ Boson cascade simulation

5 Conclusion

CORSIKA8 Simulations

Standard simulations

Boson cascade simulation

Conclusion

Standard air showers simulations

Goal of this section:

- Setting a ground
- Verify the transition CORSIKA 7 to 8

High energy boson cascade 00	CORSIKA8 Simulations	Standard simulations	Boson cascade simulation	Conclusion 000
Own research				
Looking for any origi	nal result			

Looking for a way to deduce the "in" parameters by only looking at the ground.

High energy boson cascade $_{\rm OO}$

CORSIKA8 Simulations

Standard simulations

Boson cascade simulation

Conclusion

Own research

Parameters distribution depending on the particle type

- Used Log scale to spread out the bundle
- Looking for any kind of emerging phenomenon
- Energy Threshold (Chosen by CORSIKA team)

				000
High energy boson cascade	CORSIKA8 Simulations	Standard simulations	Boson cascade simulation	Conclusion

Own research

Parameters distribution depending on the particle type

Constant ν , μ

CORSIKA8 Simulations

1000

750

500

Standard simulations

4000

Boson cascade simulation

Conclusion

Spacial distribution of the particles

(b) $\theta = 30$

X and Y distribution when th=30

(c) $\theta = 75$

Top : Proton | Bottom : Iron, (B) (B) (B) (B)

10 / 22

High energy boson cascade CORSIKA8 Simulations oco CORSIKA8 SIMULATIONS

Parameters of the ellipse are such that 90% of the particles are in.

CORSIKA8 Simulations

Standard simulations

Boson cascade simulation

Conclusion 000

Spacial distribution of the particles

Figure: Expected ellipse width¹ (blue line) versus actual ellipse width (Orange crosses). Proton showers on the left, iron shower on the right

3000

 $\dot{\mathbf{x}}$

1000

¹Same result for length, but data were lost

High energy boson cascade 00	CORSIKA8 Simulations	Standard simulations	Boson cascade simulation	Conclusion
What is X_{max}				
Study of the shower	before impact			

- Time-dependent evolution (no)
- Altitude dependence (no)
- Interaction Depth g.cm⁻² (yes)

$$X = \int \rho dr$$

Starts at 0 when outside the atmosphere, and grows as the altitude goes down.

One important parameter² : X_{max} .

²The value of X when the amount of muon produced is at the maximum $\Xi = 9900$

CORSIKA8 Simulations

Standard simulations

Boson cascade simulation

Conclusion 000

How X_{max} evolves depending on the input parameters Angle

CORSIKA8 Simulations

Standard simulations

Boson cascade simulation

Conclusion 000

How X_{max} evolves depending on the input parameters

Energy

High energy boson cascade CORSIK

CORSIKA8 Simulations

Standard simulations

Boson cascade simulation

Conclusion

Focus on the muon production

Study of the shower on the ground

The amount of muon per shower : good indicator to compare standard showers and high boson scattering theory showers. Introduction of the Muon Bundle.

CORSIKA8 Simulations

Standard simulations

Boson cascade simulation

Conclusion 000

The Muon Bundle

Two examples of muon bundle selection. Threshold : $E_{\mu} > 60 \, GeV$, Radius<30m

High energy boson cascade 00	CORSIKA8 Simulations	Standard simulations	Boson cascade simulation	Conclusion 000
Angle dependency				

<ロト < 回 > < 言 > < 言 > こ き < こ > こ の < C 18/22

CORSIKA8 Simulations

Standard simulations

Boson cascade simulation

Conclusion 000

Energy dependency

- Linear behavior
- No Iron data at E=1e18eV
- Small inaccuracy at E=1e14eV

High energy boson cascade 00	CORSIKA8 Simulations	Standard simulations	Boson cascade simulation ●00	Conclusion
Contents				

- 2 CORSIKA8 Simulations
 - "In" parameters
 - "Out" parameters

3 Standard simulations

- Own research
- Focus on X_{max}
- Focus on the muon production

4 Boson cascade simulation

5 Conclusion

CORSIKA8 Simulations

Standard simulations

Boson cascade simulation $\circ \circ \circ$

Conclusion 000

High scattering boson cascade simulation

CORSIKA8 Simulations

Standard simulations

Boson cascade simulation $\circ \circ \circ$

Conclusion

High scattering boson cascade simulation

High energy boson cascade 00	CORSIKA8 Simulations	Standard simulations	Boson cascade simulation	Conclusion ●00
Contents				

- High energy boson cascade
- 2 CORSIKA8 Simulations
 - "In" parameters
 - "Out" parameters
- 3 Standard simulations
 - Own research
 - Focus on X_{max}
 - Focus on the muon production
- 4 Boson cascade simulation

High energy boson cascade 00	CORSIKA8 Simulations	Standard simulations	Boson cascade simulation	Conclusion 000
Conclusion				

The cosmic rays showers studies are a very important field of particle physics that one must not neglect.

I did not have the time to compare my result properly with experimental data.

This internship showed me a new way to study particle physics that I had never considered before.

Bad side : Remote. (SSH problems, communication problems)

High energy boson cascade 00	CORSIKA8 Simulations	Standard simulations	Boson cascade simulation	Conclusion 00●

Thank you for your attention.