ZTF France meeting, LPC, 21-22 March 2022

Flat-fielding

Philippe Rosnet Laboratoire de Physique de Clermont Université Clermont Auvergne – CNRS/IN2P3

Master-flat

Filter and LED spectra

Master-flat construction

January 2019 (LED09) : daily-flat / monthly-flat

Before removing "bad" daily-flat

January 2019 (LED09) : daily-flat / monthly-flat

20190106 - LED09

January 2019 (LED09) : master-flat

After removing "bad" daily-flat

January 2019 (LED09) : master-flat residual

201901 - LED09

201901 - LED09

LED13 : master-flat residual from normed counting

LED13 : master-flat residual from raw counting

2019 (LED09) : monthly-flat / yearly-flat

201901 - LED09

LED weighting

https://www.oir.caltech.edu/twiki_ptf/pub/ZTF/Calibration/ZTFnote_SED-LED.pdf

LED weighting : methodology

- Based on star SEDs through ZTF filters with QE $S(\lambda) = \text{SED}(\lambda) \times T_{\text{Filter}}^{\text{QE}}(\lambda)$
- Build LED combination associated to each filter (3 or 4 LEDs) with CCD QE $L(\lambda) = \sum_{i=1}^{3-4} k_i \times \text{LED}_i(\lambda) \times \text{QE}(\lambda) \text{ with } \int \text{LED}_i(\lambda) \, d\lambda = 1$
- Minimize chi-2 function: k_i are free parameters with $\sum_i k_i = 1$
 - Based on SED amplitude

$$\chi^2_{\rm Amp} = \sum_{\lambda}^{N_{\lambda}} (S(\lambda) - L(\lambda))^2$$

• Based on SED amplitude and first moment $\langle \lambda_S \rangle = \frac{\int S(\lambda) \lambda \, d\lambda}{\int S(\lambda) \, d\lambda}$

$$\chi^{2}_{Amp+|Mean|} = \sum_{\lambda}^{N_{\lambda}} (S(\lambda) - L(\lambda))^{2} + N_{\lambda} \times |\langle \lambda_{S} \rangle - \langle \lambda_{L} \rangle|$$
$$\chi^{2}_{Amp+1*|Mean|} = \sum_{\lambda}^{N_{\lambda}} (S(\lambda) - L(\lambda))^{2} + \bigcup_{\lambda} \times |\langle \lambda_{S} \rangle - \langle \lambda_{L} \rangle|$$
Lagrange multiplier

Filter & LEDs

Set of SED's

SDSS-BOSS stellar templates

- 322 spectra
- All star type

SN factory

- 172 SNe la time series
- More than 2000 spectra

0.0 +

 λ (nm)

g-filter LED weights

 $< k_1 > = 0.315$

0.5

0.519

 $< k_2 > = 0.214$

 $< k_3 > = 0.101$

 $< k_4 > = 0.369$

 $< k_1 > = 0.343$

 $< k_2 > = 0.356$ $< k_3 > = 0.081$

 $< k_4 > = 0.220$

0.6

0.6

r-filter LED weights

0.6

0.6

i-filter LED weights

SDSS-BOSS

I-filter with fON SED

SNFactory

I-filter with fON SED

 $< k_1 > = 0.536$

 $< k_2 > = 0.309$

 $< k_3 > = 0.155$

0.6

0.6

0.5

0.5

 $< k_1 > = 0.582$

 $< k_2 > = 0.001$

 $< k_3 > = 0.417$

LED weights

Table 3: LED weights with filter in place from SED fit of SDSS-BOSS stellar templates (BOSS) and SN Factory time series (SNF), and the mean value of both data samples, for each ZTF filter. For each data set and their average the sum rule $\sum_i k_i = 1$ is applied. The third row reports the LED scaling factor to account for differences in initial intensity computed from LED flat-fileds recorded on June 2nd, 2020.

Filter	LED	Scaling	$\chi^2_{\rm Amp}$			$\chi^2_{ m Amp+Mean}$		
		factor	BOSS	SNF	BOSS+SNF	BOSS	SNF	BOSS+SNF
G	02	0.98691	0.283	0.315	0.299	0.341	0.343	0.342
	03	0.99593	0.239	0.214	0.227	0.341	0.356	0.349
	04	0.98706	0.139	0.101	0.120	0.078	0.081	0.079
	05	0.84069	0.339	0.369	0.354	0.239	0.220	0.230
R	07	1.03225	0.317	0.367	0.342	0.018	0.087	0.053
	08	1.05036	0.197	0.116	0.156	0.150	0.284	0.217
	09	1.03757	0.128	0.171	0.154	0.337	0.313	0.325
	10	1.05238	0.349	0.346	0.347	0.494	0.316	0.405
Ι	11	1.00242	0.388	0.536	0.462	0.421	0.582	0.501
	12	0.69836	0.435	0.309	0.372	0.147	0.001	0.074
	13	0.61039	0.177	0.155	0.166	0.432	0.417	0.425

Conclusions and perspectives

Master-flat

- Stability over one month $\sim 0.1\%$
- Require day-by-day inspection to remove "bad" daily-flat
- Next step:
 - Master-flat over one year (2019)
 - Check CCD steps in flats versus sky-noise in the coming night

LED weighting

- Preliminary study based on SED fitting
- Two set of weights:
 - \circ SED shape fitting
 - SED + 1st moment fitting
- What next...