Study of the redshift completeness of the zwicky transient facility survey with supernovae

Manon Bailleul (M2 internship) Philippe Gris and Philippe Rosnet

ZTF completeness redshift from Supernovae

- \succ Goal of the study
- Method and tools
- > Results (preliminary)
- > Next steps

- ZTF is a astronomical survey based on the detection of transient objects such as supernovae.
- Type Ia supernovae (SNe Ia) are standardizable thus representing precise and reliable distance indicators.
- The Hubble diagram of SNe Ia can be used to measure accurately cosmological parameters.

- ZTF is a flux-limited survey with observations affected by the Malmquist bias : a larger number of bright SNe Ia is observed at high-redshift \rightarrow distance measurements are biased.
- Bias effects appear for $z \ge z_{complete}$ (redshift completeness) Malmquist bias effects can be corrected for but :
- - Ο
 - source of systematic uncertainties ($z \ge z_{complete}$) impact on N_{SN}(z) with a decrease if $z \ge z_{complete}$ 0

z_{complete} has an impact on the fraction of higher-z SNe Ia critical to measure cosmological parameters with high accuracy.

Method to estimate z_{complete}

- Use faint SNe la
- Z_{complete}
 - faint SNe Ia can not be observed = inaccurate measured distances

```
quality criteria (light curve+SN parameters)
```


Simulation of light curve

Install simsurvey install simsurvey_tools and different files in data

https://github.com/ZwickyTransientFacility/simsurvey

Fit

Error on color parameters

 $\mu = M_b + \alpha x_1 - \beta_c$

 $\sigma_{\mu} = f(\sigma_{M_b}, \sigma_{x_1}, \sigma_c, \sigma_{x_1c})$

We observe that : $\sigma_{\mu} \approx \beta \sigma_{c}$ with β considered as known and $\beta = 3$.

For 2 SNe Ia with the same x_1 and c we observe that their intrinsic dispersion is $\approx \sigma_{int} = 0.12$.

```
To distinguish 2 Sne Ia : \sigma_c have to be < \sigma_{int} :

\sigma_c \approx \beta \sigma_c < 0.12

\sigma_c \approx 3 \sigma_c < 0.12

\sigma_c < 0.12/3 = 0.04
```

Result

Result

What is next

- Study of :
 - cadence
 - season length

-> correlations with $z_{complete}$

- number of visits per night
- \succ Estimate $z_{complete}$ for areas of the sky \rightarrow systematic scan of the space
- Study the impact of dust on light curve simulations