

R&T BICMOS

Liste de diffusion : rt-sige-l@in2p3.fr

Wiki: https://forge.in2p3.fr/projects/rt-sige/wiki

S. Chen

J. Mesquida

G. Monier

M. Piat

D. Prêle

E. Bechetoille

S. Manen

L. Alvado

L. Leterrier

D. Charrier

D. Thers

Contexte scientifique

Objectif scientifique et technique de la R&T transverse 'BiCMOS'

- Recommandation du GT microélectronique en 2021 :
 - Offrir une alternative pérenne au seul CMOS fin
 - Répondre à un large champ de besoin de hautes performances analogique frontale (restant compatible avec un peu de mixte)
 - Maintenir une technologie BiCMOS SiGe (fin de l'AMS 0.35u SiGe...)
- ✓ En <u>physique nucléaire</u>
 - o concilier **孝 dynamique/linéarité**, **↘ bruit et consommation**
 - o avec un nombre croissant de voies $\sim 10^3$ - $10^4 \rightarrow \sim 10^4$ - 10^5
 - o et à un coût raisonnable
- ✓ En <u>astroparticules</u>
 - concilier → produit gain bande ; → bruit jusqu'aux basses
 fréquences ; → dynamique/linéarité sur lignes adaptées
 - o applications spatiales (faible conso. / durcissement) et/ou cryogéniques
- => forte complémentarité avec le WP1.1 Technologie Alternative de la MI2I

Expériences cibles

En BiCMOS SiGe

- REA (Rénovation de l'Électronique d'Acquisition) au GANIL :
 - Besoin de préamplificateur de charge configurable à distance dédié aux détecteurs silicium fortement capacitifs (~ 600 pF)
- NECTAR, Nuclear rEaCTions At storage Rings au LP2I https://www.lp2ib.in2p3.fr/nucleaire/nex/erc-nectar/
 - cellules photovoltaïques pour la détection d'ions lourds
 - => détecteurs fortement capacitifs et problématique thermique (UHV)
 - signaux basse fréquences
- ATHENA et CMB S4 : Électronique de lecture pour détecteurs cryogéniques (SQUID, TES, KID)
 - technologie BiCMOS SiGe ST130 et 'spare'
 - performances bas bruit basse fréquence + produit gain bande > 4 GHz

Expériences cibles

En CMOS ou BiCMOS, 'technologie alternative' (MI2I WP1.1)

- upgrades de XEMIS II, détecteurs à Xénon liquide pour imagerie médicale
 - nombre de voies x 100 (~106), dynamique (800 keV), faible bruit & basse consommation (2.5mW/voie —> 1.5mW/voie)
- GRIT, nouvelle version de l'iPACI (v2 -> v3)
 - nombre de voies x2 et optimisation du design.
- + SAR 10-bit 40 MHz
- + Mémoires analogiques
- Astroparticules
 - Multiplexeurs cryogéniques (signal et thermométrie)
 - Amplificateur chopper (réduction du bruit 1/f des MOS)
 - JFET (bas bruit en 1/f) à base de NPN : G = C+E, canal D-S = B

Sélection de technologies

Recensement des technologies accessibles :

- **BiCMOS SiGe**: GF 130, IHP 250 & 130, ST 130, AMS 350
- CMOS: XFAB 180 et SOI 180, ON, TSMC 130

Comparaison de plusieurs fondeurs sur la base de données non confidentielles

=> Difficile voir impossible tant qu'une NDA n'est pas signée

Critères de choix

- Pérennité à 8-10 ans
- Caractéristiques techniques : nœud, Vmax, Ft, Beta ...
- Coût
- Fondeur Français/Européen

Choix du fondeur IHP, dont la techno en 130nm SG13S

Choix d'un fondeur 'alternatif' XFAB 180nm CMOS et/ou SOI

Choix du fondeur ST 9MW SiGe 130nm à l'APC

TRL (degré de maturité technologique)

Niveau	Définition	Nom synthétique		
TRL1	Principes de base observés et identifiés	Principe de base		
TRL2	Concept technologique et/ou application formulés	Application formulée		
TRL3	Preuve du concept analytique et preuve expérimentale de la fonction et/ou de la caractéristique critique	Preuve du concept		
TRL4	Vérification fonctionnelle en environnement de laboratoire au niveau composant et/ou maquette	Validation fonctionnelle		
TRL5	Vérification en environnement représentatif de la fonction critique au niveau composant et/ou maquette	Modèles à échelle réduite		
TRL6	Démonstration en environnement représentatif des fonctions critiques de l'élément au niveau modèle	Validation de la conception		
TRL7	Démonstration en environnement opérationnel de la performance de l'élément au niveau modèle	Qualification d'un modèle		
TRL8	Système réel développé et jugé apte à l'expérience	Qualification du système réel		
TRL9	Système réel ayant été utilisé à l'identique et avec succès lors d'une expérience dans l'environnement idoine.	Opération du système réel		

TRL initial: (colorer la case correspondant à votre TRL initial)

TRL1	TRL2 T	TRL3 TRL4	TRL5	TRL6	TRL7	TRL8	TRL9
------	--------	-----------	------	------	------	------	------

NDA et Design Kit

Signatures de NDA

- En collaboration avec Claude Colledani et Alban Maczka
- Demande de NDA en licence « globale » IN2P3

Signature entre le directeur de l'institut et le fondeur

- => optimisation des démarches
- => Accès à ces technologies au-delà du périmètre de la R&T
- 12 laboratoires signataires : APC, CPPM, IJCLAB, IPHC, IP2I, LAPP, LPNHE, LPC, LPC-Caen, LPSC, OMEGA, SUBATECH
- Cohérence avec la culture MI2I

NDA avec IHP signée en Janvier NDA avec XFAB signée la semaine dernière

Installation des **Kit IHP 130/250 nm** dans le cadre du projet **OMMIC** par l'IP2I au CC, test de l'accès distant, maintenance des kits, documentation utilisateurs

=> Travail à poursuivre avec le kit XFAB maintenant que le NDA est signé

Etat des principaux risques

Exemples de libellés	Action pour réduire le risque	Responsable de l'action	Criticité	Tendance
Pérennité de la technologie.	 Changer de technologie mais délais très long . Orientation vers le nœud 130nm de IHP et 180nm de XFAB . 	D. Charrier	*	•
Incertitude délai signature NDA.	Risque écarté avec XFAB car NDA signée cette semaine .	D. Charrier	*	→
Incertitudes caractéristiques.	 Changer de technologie mais délais très long . Caractéristiques IHP moins bonnes qu'espérées . Caractéristiques XFAB à découvrir . 	D. Prêle	*	17
Durée des fonderies.	 Changer de technologie mais délais très long Durée fabrication IHP 130 de 5 mois > IHP 250. Durée fabrication XFAB estimée à 6 mois. 	D. Prêle	*	→

Avantages/inconvénient d'un Transistor BJT / CMOS

Avantages

- Bruit série meilleur que le MOS
- gm/lc = 1/Vt ~ 40 constant et supérieur à gm/ld MOS à surface équivalente
- bruit en 1/f bien meilleur que les MOS : intérêt pour ATHENA/CMB S4, pour les CSA lents (NECTAR).
- grand r_out = V_E / Ic

Inconvénients

Présence d'un bruit parallèle : shot & flicker noise de base

Conséquences

- faible bruit sur impédance de source faible :
 - détecteurs fortement capacitif : détecteurs Si GANIL, photovoltaïques ou faiblement capacitif mais à hautes fréquences
 - détecteur faiblement résistif : SQUID
- produit gain-bande élevé
 - Bande passante élevée
 - permet des taux de contre réaction élevé, donc faible dérive en température, meilleure linéarité, plus faible dispersion

Etages de puissance

Facteurs de mérite des MOS

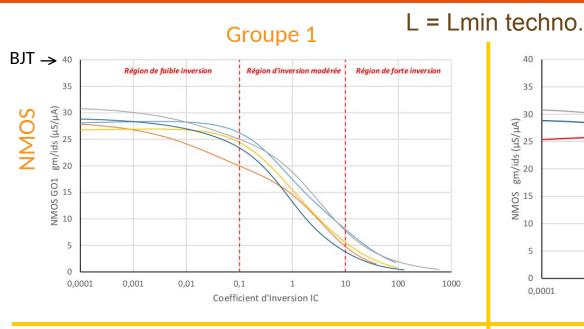
Nmos ou Pmos monté en diode

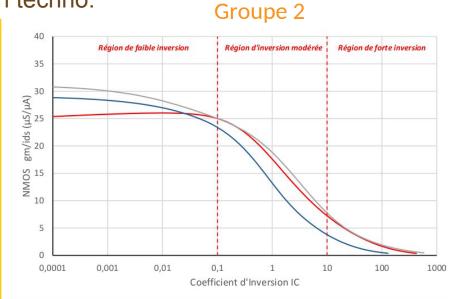
- simulations DC, variable : V_{GS} = V_{DS}
- extraction de Id, Vth, g_m, r_{out}, f_T

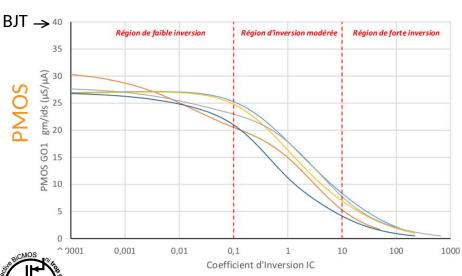
Quelques facteurs de mérite

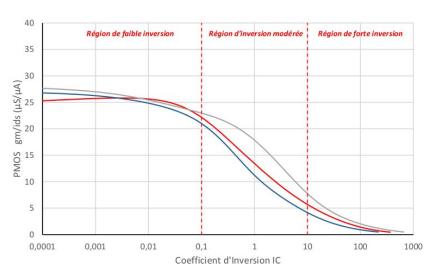
- Efficacité de transconductance : gm/ld
- Efficacité de vitesse : f_T.gm/ld
- Gain intrinsèque : g_m.r_{out}
- Produit Gain-Bande: f_T.g_m.r_{out}

Expression des facteurs de mérite en fonction du coefficient d'inversion IC

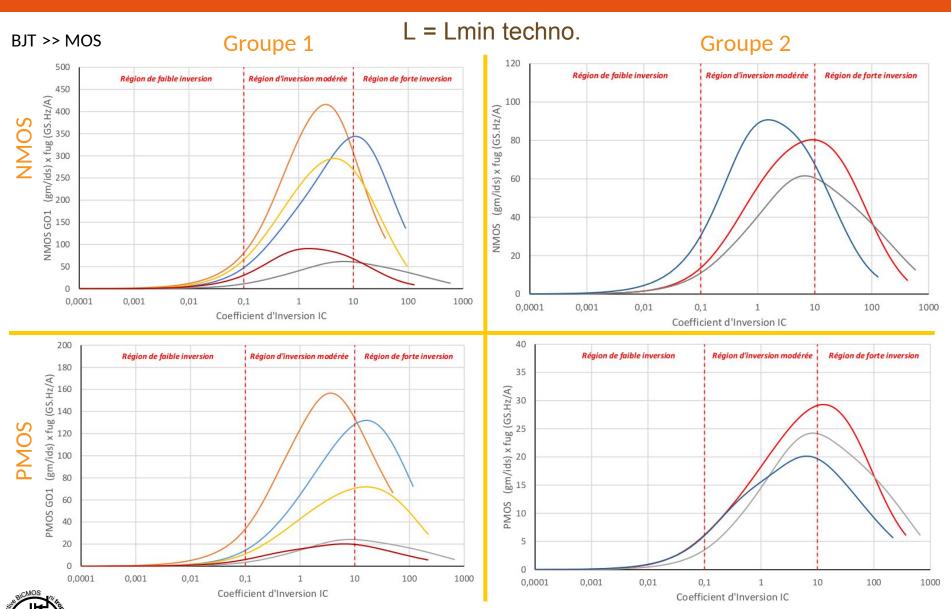

- IC = $I_{DS}/(I_0.W/L)$
- I₀ dépend uniquement de facteur technologique : u, Cox, V_T
- régime de faible inversion : IC < 0.1
- régime d'inversion modérée : 0.1 < IC < 10
- régime de forte inversion : 10 < IC

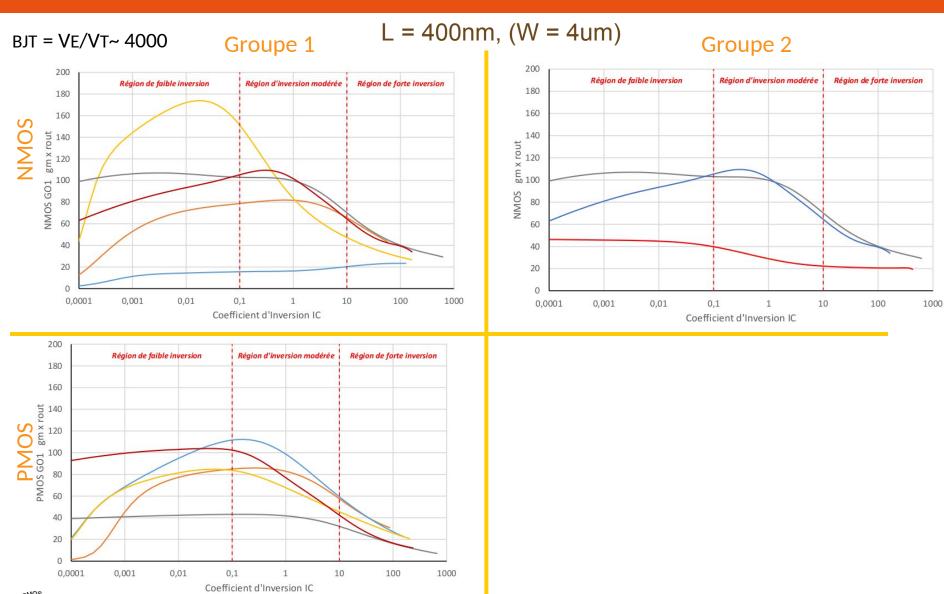

Technologies évaluées :


TSMC 130, IHP 130, IHP 250, TSI 180, AMS 350, ON SEMI 350, ST 130 ...

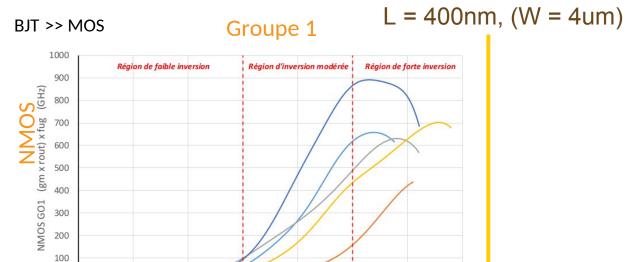


Transconductance efficiency : $g_m/I_d = f(IC)$



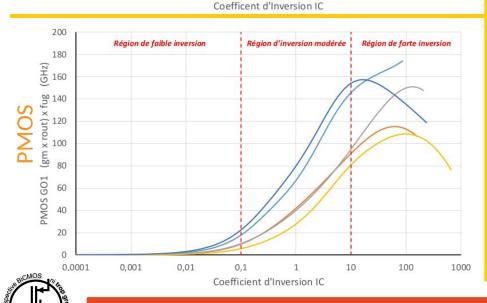


Speed efficiency : $f_T.g_m/I_d = f(IC)$



Intrinsec gain : $g_m.r_{out} = f(IC)$

Gain bandwidth product : $f_T.g_m.r_{out} = f(IC)$


Groupe 2

10

100

1000

0,1

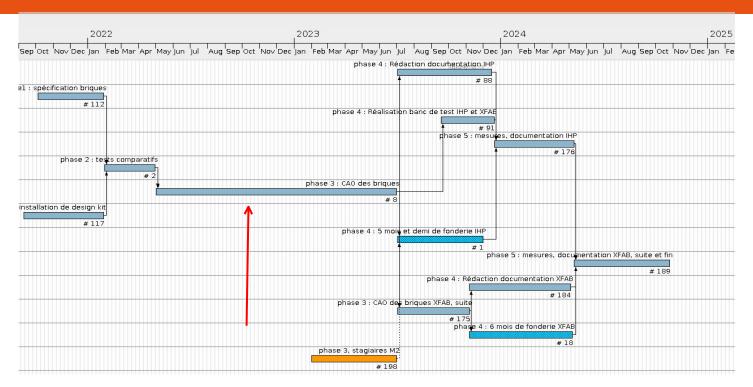
0,0001

0,001

0,01

Facteurs de mérite, briques de base

Travail à finaliser


- facteurs de mérites 'bruit' et 'dynamique'
- avec les MOS XFAB et ST
- avec les transistors bipolaires

Identification de quelques briques de bases à développer

- Bloc pour mesure de densité spectrale de bruit de transistors dès le Hz
 - paramètre qui est généralement mal modélisé
 - argument important sur la justification d'une technologie BiCMOS
- CSA configurables,
- source de courant bas bruit
- ampli de tension bas bruit,
- OTA
- amplificateur de puissance
- •

Calendrier

- Jalon fort : dates fonderies, IHP 130nm juillet 2023 et XFAB 180nm oct. 2023
- tâches principales
 - comparaisons de techno. CMOS/BiCMOS par des facteurs de mérites
 - CAO de briques de bases
 - carte de test et mesure des circuits, documentation
- => validation d'une technologie 'pérenne' et 'low cost' pour la communauté
- => publication IEEE « Transactions on Circuits and Systems »

Merci pour votre attention

