

RD4HK & Hyper-Kamiokande experiment

Benjamin Quilain (LLR - CNRS/Ecole polytechnique)

on behalf of HK-France

Journees R&T, 2022/10/17

I. Introduction to Hyper-K

What is Hyper-K?

• Next generation of neutrino observatory in Japan \rightarrow construction 2020-27

71 m

 \rightarrow A 260 kton water Cherenkov detector \rightarrow <u>Fiducial Mass ~ 8 x SK.</u>

Super-Kamiokande

68 m

	Super-K	Hyper-K (1st tank)			
Site	Mozumi Tochibo				
Number of ID PMTs	PMTs 11,129 >				
Photo-coverage	40%	20 % (x2 sensitivity)			
Mass / Fiducial Mass	50 kton / 22.5 kton	260 kton / 187 kton			

Solar neutrinos

Physics case

Proton decay

Probe Grand Unified Theories through p-decay (world best sensitivity)

MSW effect in the SunNon-standard interactions in the Sun.

 \mathcal{V}

Supernovae neutrinos

- <u>Direct SNv</u>: Constrains SN models.
 Relic SNv: Constrains cosmic star
- <u>Relic SNv</u>: Constrains cosmic star formation history

- Observe CP violation for leptons at 5σ
- Precise measurement of δ_{CP} .
- High sensitivity to v mass ordering.

II. Scope of RD4HK & results

HK far detector electronics

- The whole HK physic signal will rely on 20k PMTs of 50 cm.
- <u>PMT signal to be readout by electronics under water</u> :
 - \rightarrow 24 channels/PMTs read in one stainless steel box under water.

Clock generation & distribution LPNHE + IRFU

<u>France's proposal</u> : develop the whole PMT read-out digitization & synchonization systems \rightarrow Absolutely central role in HK !

The HKROC digitizer

<u>Based on HKROC chip</u>: 12 PMTs ↔ 36 channels (high, medium, low gain)

Overview of the HKROC digitizer

- <u>HKROC is a waveform-like digitiser @40 MHz \rightarrow 1 point every 25 ns.</u>
 - \rightarrow Charge digitized by N = 1 \rightarrow 7 points (chosen by slow-control).

• <u>HKROC digitizer</u> : 24 PMT channels readout by 2 HKROC ASIC.

HKROC prototype v1

Trigger happens

<u>Started R&D in summer 2020</u>: Make a chip in 2 years → Challenging schedule : 1. Receive chip in Dec. 2021.

Example with N = 5

- 2. Provide tested chip by end of June 2022.
- No delay in 2 years : → Chip came back in Jan. 2022 (pandemic).

 \rightarrow Worked hard to finalize tests for June.

HKROC digitizer - trigger & timing results

• HKROC-digitizer v1 received & completely tested in few months.

- <u>Set threshold at 1/6 p.e.</u>
- <u>Hit efficiency :</u>
 90 % for 1/5 p.e events
 ~100 % if ≥ 1/4 p.e
- <u>Very low noise :</u> < 1 Hz.
- <u>TDC resolution :</u> 150 ps @1 p.e [300 ps required] ≤ 30 ps @ 10 p.e [200 ps required]

 \rightarrow Excellent agreement with HK₉ requirements.

HKROC digitizer - Charge results

• Charge linearity $< \pm 1\%$ [1 to 1250 p.e.]

Charge resolution :

<0.1 p.e @< 10 p.e, <1 % otherwise.

 \rightarrow All characteristics fulfill HK requirements & confirmed w/ PMT. \rightarrow Large improvements w/ HKROC much beyond requirements by the collaboration

 \rightarrow <u>Ex</u>: dead-time \downarrow **from**

 $1 \ \mu s \rightarrow 30 \ ns.$

 HKROC project has been on-time & is a huge technical achievement that has only been possible thanks to the great collaboration between the IRFU, OMEGA & LLR + financial support from X & IN2P3.

Summary of the digitizer measurements

Item measured	Performances	
Trigger efficiency at $1/6$ p.e.	> 90% for 1/5 p.e signals	
	100% for $\ge 1/4$ p.e signals	
Trigger noise at $1/6$ p.e.	< 1 Hz (No trigger observed in 10 s)	
TDC resolution	150 ps at 1 p.e, 70 ps at 5 p.e, $25 \text{ ps} > 10 \text{ p.e}$	
	Validated with PMT	
	< 0.5% in high & medium gain channels	
Charge linearity	< 1% in low gain channel up to 1250 p.e	
	Validated with PMT	
	< 0.1 p.e for signals up to 10 p.e	
	< 1% for signal 40 - 300 p.e and > 750 p.e	
Charge resolution	< 2.4% for all other cases.	
	Will be improved by reducing the unnecessary voltage division.	
	Validated with PMT	
Dead-time	≤ 30 ns for two signals of same amplitude	
& pile-up	≤ 30 ns for a prompt ≤ 5 p.e and secondary of 1 p.e	
	$<1~\mu{\rm s}$ for a prompt signal ≤ 850 p.e and secondary 1 p.e	
Maximal	415 kHz in normal mode	
hit-rate	950 kHz in SN-mode	
w/ 100% eff.	Potential extension beyond to be studied.	
	Hit probability in neighbouring channel	
Cross-talk	of a 1250 p.e signal is $< 0.1\%$	
	Note that cross-talk found at ASIC level, but cut	
	by FPGA. Identified and will be removed in ASIC v2.	
Maximal	415 kHz in normal mode	
hit-rate	950 kHz in SN-mode	
w/ 100% eff.	Potential extension beyond to be studied.	
Temperature	time resolution $\Delta T = 1 \text{ ps/}^{\circ}\text{C}$	
$dependency^2$	gain variation $\Delta Q = 0.05\%/^{\circ}$ C (no correction)	
Resistance to HV	Unprotected ASIC received 10^8 5V injection	
	without any impact on performances	

• <u>Large impact on physics :</u> v mass ordering & Supernova v.

Overall view of the timing system <u>Time-generation :</u> • Provides local time w/ high stability to synchronize HK w/ v beam & other multi-messenger detectors Cavern **GNSS/UTC** WR Network WR switch WR switch 10MHz, PPS & Data Time Ref/ fanou GNSS 5MHz Atomic GNSS Clock distribution receiver Atomic WR WR switch WR switch Network (redounded link) Time PPS/10N1Hz Ref/ 10MHz, PPS & Data fanout 1st Atomic distribution **GNSS** Clock PPS/125MHz 5MHz stage

Redundancy

Time-generation

- Local time PPS generated by a <u>5 MHz Rb atomic clock.</u>
- <u>2 GNSS receivers connected to same antenna</u> to measure the difference between local PPS & UTC time → Transform local time to UTC.
- Collaboration w/ SYRTE which provide the French National time.

- Absolute time requirements for HK : ± 100 ns.
- Largely achieved w / our system based on Rb clock.
 → Deviation of 10⁻¹²s/day.
- Wish ↑ accuracy in future (v mass measurements etc.)
 → Reach <u>10⁻¹² s</u>w/ correction₅.

First stage distribution

• <u>First stage is on surface</u> :

1. Generates the 125 MHz clock for Hyper-K from the 5 MHz of the atomic clock.

- 2. Broadcasts this clock and synchronize command to 2nd stage.
- <u>CEA-IRFU</u> has realized the 1st distribution stage very first prototype.

- The board has been received in April.
- Most of the tests are finalized.

Second stage distribution

- <u>Second stage at surface & in water vessel</u> :
 - \rightarrow Encodes, sends, & decodes the clock.

*Not in scale

• <u>Concept tested at LPNHE :</u>

Second stage distribution

• <u>Second stage prototype board :</u> design finalized & send to fabrication.

- <u>Firmware</u> : under development using the same mezzanine (TE0808) and a motherboard EBV
- <u>Software</u> : Embedded under dev. Linux OS already installed and tested. Most peripherals control's sw already written.

III. Incoming steps & timeline

Prospects for the HKROC digitizer

- <u>2 other digitizers were competing for HK :</u> QTC (Japan), discrete (Italy).
 → Unfortunately, HKROC not chosen as primary solution for HK.
- <u>Summary of the review:</u>
- 1. All 3 solutions for HK digitization are suitable both in terms of minimal requirements & schedule.
- 2. The HKROC team has clearly shown the large advantages for physics.
 3. The HK management <u>preferred an already final solution with less</u> <u>impact on physics compared to HKROC which will be finalized in 8</u> <u>months</u> → The main reason we were not selected was that we did not had a on-shelves solution ready (others had).
- HKROC has been built to be a <u>waveform digitizer for any PMT-based</u> <u>experiment in the next 10-15 years</u>.

 \rightarrow We will finalize the HKROC development all the way to a modular front-end board.

HKROC digitizer timeline

- <u>We propose to keep our R&D original schedule :</u> → First complete digitizer board in spring 2023.
- NIM paper : Being prepared for a publication at the end of spring 2023.
 → Based on HKROC v2 & prototype board v1.
- From now : starts contact with other experiment using PMTs : IceCube gen2, potential HK upgrade, Intermediate Water Cherenkov Detectors → If you are interested, please let me know !

Status & timeline for the clock

- Final time generation & distribution scheme presented and <u>validated by</u> <u>the HK electronics group.</u>
- The timing system technical <u>note has been submitted and is under</u> <u>evaluation</u> (delayed due to digitiser choice)
- \rightarrow There is no alternative solution in HK !
- Significant progresses on-going : ahead of official schedule
 → The development is going perfectly well & on-time !
 → Ordering components for the final production has started.

Conclusions

- Hyper-K will be the world-leading experiment in many aspects of neutrino physics for the next 20 years.
- <u>RD4HK only started in January 2022</u>, but tremendous progresses have been made :

<u>1. The HKROC ASIC has been received and completely characterized</u>

- \rightarrow Excellent agreement with expectations, though this is very 1st version.
- → Largely surpass existing CATIROC & other solutions in Hyper-K.
- \rightarrow Very very small cross-talk found (0.02 %) \rightarrow To be reduced by a factor of 10 in HKROC v2.

2. Clock generation & distribution system scheme has been completed :

- \rightarrow Time generation system has been validated through measurements.
- \rightarrow First stage distribution first prototype completely characterized.
- \rightarrow Second stage distribution first prototype sent to production.

• Huge technical achievements & success in only 1 year !!

Conclusions

- The HKROC digitizer & clock system development will continue in 2023.
 - \rightarrow Final production-ready digitizer for HKROC.
 - \rightarrow All the way to production for the timing system.
- Wish to transform this R&T project into a physics master project from beginning 2023.

 $\delta_{CP} = -\pi/2$: 50 after 2-4 years of data taking

 \rightarrow Independent from \downarrow systematic uncertainties.

 \rightarrow DUNE will require 7-8 years.

24

Additional slides

Le groupe HKROC propose de finaliser la R&D ASIC + carte :

- \rightarrow Carte complete et finale au printemps 2023.
- \rightarrow Demande budgetaire additionnelle : prod. de quelques cartes v2.
- Papier NIM : Preparation pour publication fin printemps 2023.
 → Base sur HKROC v2 & carte proto v1 : tests finalises en Fevrier 2023.
- <u>Hiver 2022</u> : contact avec d'autres manip utilisant des PMTs (IceCube gen2...), upgrade HK eventuel, HK outer-Detector etc. ³⁰

• <u>Conclusion de la revue</u>: malheureusement, <u>HKROC n'a pas ete</u>

<u>selectionne en</u>	Item	HKROC	QTC	Discrete	Weight
	Basic requirements	4	4,857143	4,8571429	30,00%
premiere position	Comparison of technical	4,428571	2,428571	3	15,00%
par Hyper-K.	performance beyond basic				
I	requirements				
	Proposed schedule and risks	3,071429	4,714286	4,7142857	25,00%
	Resources	4,857143	4,428571	4,2142857	15,00%
	Reliability	4,142857	4,214286	4,1428571	15,00%
	TOTAL	3,982143	4,296429	4,3392857	
<u>En resume :</u>					

1. Les 3 solutions ont ete retenue comme parfaitement viable pour HK.

2. Le cross-talk de l'ASIC a impacte les « basic requirements & schedule. »

3. L'equipe HKROC a su demontre ses larges avantages sur la physique.

4. Le management a clairement <u>prefere une solution déjà finale moins</u> <u>ambitieuse a une solution optimale mais qui sera finale dans 8 mois</u>.

→ Nous avons **decide de proposer un projet alternatif permettant de maintenir ne visibilite forte pour l'IN2P3 et l'IRFU** : plusieurs options sont en cours d'evaluation/negociation.

Le groupe HKROC propose de finaliser la R&D ASIC + carte :

- \rightarrow Carte complete et finale au printemps 2023.
- \rightarrow Demande budgetaire additionnelle : prod. de quelques cartes v2.
- Papier NIM : Preparation pour publication fin printemps 2023.
 → Base sur HKROC v2 & carte proto v1 : tests finalises en Fevrier 2023.
- <u>Hiver 2022</u> : contact avec d'autres manip utilisant des PMTs (IceCube gen2...), upgrade HK eventuel, HK outer-Detector etc. ³²

Faits marquants 2022 - Electronique

- Final time distribution scheme presented and validated by the HK electronics group.
- The time distribution subsystem technical <u>note has been submited and</u> <u>is under evaluation</u> (delayed due to digitiser choice)
- \rightarrow It should be highlighted that there is no alternative solution in HK !

- <u>Significant progresses on-going</u> : ahead of official schedule
- → The development is going perfectly well & on-time !
- Ordering components for the final production via PUMA procedure Anticipation on the 2024 spending

Rappels de l'organisation RD4HK

Responsable national : B. Quilain

HKROC	Digitiseur	Ger	neration horloge	Distribution horloge	
F. Dulucq (OMEGA)	J. Nanni (LLR)	M. Guigue (LPNHE)		S. Russo (LPNHE)	
OMEGA	LLR		LPNHE	ILANCE	
S. Callier (IR) S. Conforti (IR) C. De la Taille (IR) P. Dinaucourt (AI) F. Dulucq (IR) A. Mghazli (IR/CDD) L. Raux (IR) → 1.3 FTE / an IR	 A. Afiri (IR/CDD) L. Bernardi (IR) F. Gastaldi (IR) J. Nanni (IR) → 1.2 FTE / an IR A. Beauchene (PhD) M. Buizza-Avanzini (O. Drapier (DR) T. Mueller (CR) 	CR)	E. Pierre (IR) S. Russo (IR) V. Voisin (IR) → 1.3 FTE / an IR M. Guigue (MdC) C. Giganti (CR) L. Meller (PhD) B. Popov (DR) M. Zito (DR)	M. Gonin (DR) G. Pronost (Posdoc) → 1.2 FTE / an phys.	
CNTS	 P. Paganini (DR) B. Quilain (CR) → 1.8 FTE / an phys. 		\rightarrow 1.2 FTE / an phy	FTE moyens calcules sur 4 ans 34 (01/2022-12/2025)	

Reminder : what is Hyper-K ?

• Next generation of neutrino observatory in Japan \rightarrow construction 2020-27

71 m

 \rightarrow A 260 kton water Cherenkov detector \rightarrow <u>Fiducial Mass ~ 8 x SK.</u>

Super-Kamiokande

68 m

	Super-K	Hyper-K (1st tank)			
Site	Mozumi Tochibora				
Number of ID PMTs	MTs 11,129 40,00				
Photo-coverage	40%	40% (x2 sensitivity)			
Mass / Fiducial Mass	50 kton / 22.5 kton	260 kton / 187 kton			

Solar neutrinos

Physics case

MSW effect in the Sun
Non-standard interactions in the Sun.

 \mathcal{V}_{e}

Solar neutrinos : upturn

Probe solar v : SK/SNO found a high matter effect in the Sun
 ↔ Solar upturn shifted to lower energies

- SK deviates from standard upturn scenario > 2σ .
- Displacement of the upturn can be explained by :
 - Statistical fluctuation ?
 - Light sterile neutrino ?
 - Non Standard Interaction in the dense Sun ?

Solar neutrinos

Physics case

- \mathcal{V} • MSW effect in the Sun Non-standard interactions in the Sun. Supernovae neutrinos
 - <u>Direct SNv</u> : Constrains SN models.
 - <u>Relic SNv</u>: Constrains cosmic star formation history

Supernovae neutrinos

- <u>Unique probe for supernovae v</u>: 99 % of SN energy $\rightarrow v$.
 - But direct v detection very rare.
 - HK also sensitive to extra-galactic SNv from Andromeda !

• SN-relic neutrino \rightarrow new constraints

- Andromeda Milky way -100kpc -10kpc -10kpc
- on cosmic star history \rightarrow May be first detected in SK-Gd.

 \rightarrow But spectrum determined by HK : Low energy \leftrightarrow Probe older stars

Solar neutrinos

Physics case

Proton decay

Probe Grand Unified Theories through p-decay (world best sensitivity)

MSW effect in the SunNon-standard interactions in the Sun.

 \mathcal{V}

Supernovae neutrinos

- <u>Direct SNv</u> : Constrains SN models.
- <u>Relic SNv</u> : Constrains cosmic star formation history

GUT and proton decay

 π^0

p

- Probe Grand Unified Theories at a new scale through proton decay.
- <u>Golden channel</u> : $p \rightarrow e^+ + \pi^0 \rightarrow Almost background free !$
 - \rightarrow Requires 2 γ & reconstructed energy = Invariant M_P
 - \rightarrow <u>Bkg</u> : Atmospheric v producing e.g. a π^0 .

Solar neutrinos

Physics case

Proton decay

Probe Grand Unified Theories through p-decay (world best sensitivity)

MSW effect in the SunNon-standard interactions in the Sun.

 \mathcal{V}

Supernovae neutrinos

- <u>Direct SNv</u>: Constrains SN models.
 Relic SNv: Constrains cosmic star
- <u>Relic SNv</u>: Constrains cosmic star formation history

- Observe CP violation for leptons at 5σ
- Precise measurement of δ_{CP} .
- High sensitivity to v mass ordering.

Focus on CP violation

• CP violation search essentially based on accelerator v : T2HK Hyper-Kamiokande

- v_{e} appearance in a v_{μ} beam and v_{μ} disappearance & \overline{v} equivalents.
- Detector technologies, calibration, analyses well-proven by T2K&SK.
 ⇒ Quick start ! Which relies on 2 milestones :
 - 1. ↓ time to accumulate statistics \rightarrow Beam upgrade.
 - 2. \downarrow systematic uncertainties \rightarrow Constrains $v_{\mu} \& v_{\rho}$ flux before oscillation

43

Sensitivity to CP violation

• Assuming a run v:v = 1:3 @1.3MW (can be adjusted).

Atmospheric neutrinos

Mass-hierarchy can be accessed through matter effects
 → The longer the baseline, the higher the effects

- Mass hierarchy determined with upward-going multi-GeV v_e sample : atm. baseline ≤ 13000 km $\gg 295$ km accelerator baseline
 - Normal hierarchy : enhancement of $\nu_{\mu} \rightarrow \nu_{e}$.
 - <u>Inverted hierarchy</u> : enhancement of $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$.

Combination of atmospheric + beam v

- Even if MH is not known when HK starts \rightarrow Sensitivity to CPV is little affected if we add atmospheric v.
- <u>MH would be determined by :</u>
 - \rightarrow HK after \geq 6-10 years via atmospheric.
 - \rightarrow <u>DUNE</u> : after 1-2 years.

Precision of δ_{CP} measurement

• After CPV is determined, accurate measurement of δ_{CP} will be crucial

→ Maximal CPV, leptogenesis, symetries of lepton's generations ...

	5 years [HK & <mark>DUNE</mark>]	10 years [HK & DUNE]
CP conserved $\delta_{CP} = 0$	8° & 13°	6° & 9°
$\delta_{\rm CP} = -\pi/2$	25° & 29°	19° & 24°

• HK will be the leading experiment for CPV & δ_{CP} measurements in the next 20 years.

Origins of the HKROC : the CMS HGCROC

• <u>HKROC based on HGCROC :</u> chip developed for CMS-HGCalorimeter

 \rightarrow Rely on many years of expertize & tests.

48

 \rightarrow Great synergy between our projects !

Performances of the HKROC digitizer

- <u>Measurements @3 test bench/labs in parallel :</u> CEA, OMEGA, LLR.
 - \rightarrow High redundancy to \downarrow risk of mistakes.
 - \rightarrow Ready for the pre-production & production tests, also @3 labs.

- <u>Measurements based on HKROC v1 :</u>
- → Back fom prod. on 01/28. → <u>Chip size :</u>
- 5 mm x 5 mm [Ultra-compact]

HKROC digitizer planning : ASIC

- <u>Current version v1 :</u> mounted on board w/ flip-chip.
- BGA-package for final board : ordered & in prod.
 → To be received in September.
- <u>Version v2</u>: A TSMC run for OMEGA already scheduled in Dec. 2022.
 - \rightarrow Will use it to fine tune HKROC for HK.
 - \rightarrow Completely remove cross-talk.
 - \rightarrow Likely to submit 2 versions :
 - <u>v2-A</u> : minimal change wrt v1 for safety.
 - <u>v2-B</u> : more aggressive changes to ↑ hit-rate largely beyond our requirements.

HKROC digitizer planning : Board

• <u>Prototype v1</u>: Same as final prototype board except for the FPGA & Interface with PC left on the KCU105.

- Test whole circuit from analog to digitized points.
- Test the 2 HKROCs.
- Tests communication with DPB (Curro & al.)
- \rightarrow Schematics well-advanced (based on current mother board).
- \rightarrow 1 HKROC-board in 2022/09, 2 HKROC board in 2023/01.
- <u>Prototype v2</u> : The final prototype board. \rightarrow To be received in summer 2023.

Updated schedule towards production

• ASIC production could be done in advance : from end of 2023.

 \rightarrow Have <u>3 operating ROBOT</u> to test them at CEA, LLR & OMEGA (used for CMS to test 200,000 HGCROC chips).

- Board production : from Q4 2024 to mid-2025.
- We are completely on-time !

The Hyper-K candidate digitizers

• <u>3 digitizers considered</u> : all high-specs but explore ≠ digitization method

	QTC	Discrete	HKROC
Charge digitizer	ASIC (QTC)	Commercial ADC	ASIC (HKROC)
Digitization method	Charge integration	Charge integration	Waveform digitizer
TDC	On FPGA	Same as QTC	HKROC internal TDC

- All 3 solutions will likely match the specs.
- Internal review will finish next week.
- Collaboration review has started 53
 → Decision by end of July.