

Highly-Granular ECAL at Higgs Factories for Particle Flow Approach based detectors

y/mm

Full Reconstruction of single particles

- Charged measured mostly from trackers
- Neutrals only measured from calorimeters
- → Large Tracker
 - Precision and low X₀ budget
 - Pattern recognition
- ➡ High precision on Si trackers
 - Tagging of beauty and charm
- Large acceptance

Highly Granular
 Imaging Calorimetry

Vincent.Boudry@in2p3.fr

Modular & Transverse Constraints

ALICO Timeline of SiW-ECAL Prototypes

(40+24)

Detector slab (x30)

Physical (2005-11)

- 1×1 cm² on 500µm 6×6 cm²
 Pad glued on PCB
 Floating GR
- × 30 layers (10k chan).
- External readout
- Proof of principe

Vincent.Boudry@in2p3.fr

Technological (now)

- Embedded electronics
 - Power-Pulsed, Auto-Trig, delayed RO
 - S/N = (MPV/ σ_{Noise}) $\geq \sim 12$ (trig)
- Compatible w/ 8+ modules-slab
- 5×5 mm² on 320–650µm 9×9 cm²
 × 26–30 layers
 - 8k (slab) ~ 30k (calo) channels

We are

- here
- Final ASIC

8

Pilote

- 1M

× 2

Full Detector

× 45

- ➡ 70M channels
- on 750µm 12×12 cm² 8" Wafers ?

'dead space free' Carbon Fibre-W

Structure

- Pre-industrial building
- Full integration (⊃ cooling)

Maquettes détecteur et modèle technologiques

Maquettes (prototypes partiels) =

- Stack Calo1 (15 × 1 ASU) Hétérogène → Uniforme
- SLAB (1× 8–12 ASUs) Partiel ⇒ Complet
- Stack Calo2 (24 × 1 ASU)
- Stack Calo3 (15 × 3 ASUs)

Modèle = Module Pilote

- 3 à 5 tours de 13 alv.
 - Structure adaptée
- 39-65 SLABs doubles de 7-8 ASUs
 - 546–1040 ASUs **↔ Industrie**
- Cooling
- Compact DAQ

Conditions Linéaires et Circulaires

Conditions Linéaire: ILC, HL-ILC...

- 250 GeV (ZH), 365 GeV (tt), 500 GeV (ZHH) + [1000 GeV], *L*~cst.
- Power pulsing : 5 [10–15]Hz × 1 [2] ms

Conditions très diverses et plus stricte que ILC:

- 90GeV × 10⁷ fb × 5·10³⁶ cm⁻² s⁻¹ (qq × 20,000 ILC @ 250)
- 150 GeV (WW) + 250 GeV (ZH)+ 365 GeV (tt)
 ~10⁴ fb × 5·10³⁵ cm⁻² s⁻¹ (qq × 5–10 ILC @ 250)

Changement de Paradigme (Hypothèse du Continu) et révision:

FCC-ee parameters		Z	W⁺W [.]	ZH	ttbar
√s	GeV	91.2	160	240	350-365
Luminosity / IP	10 ³⁴ cm ⁻² s ⁻¹	230	28	8.5	1.7
Bunch spacing	ns	19.6	163	994	3000
"Physics" cross section	pb	35,000	10	0.2	0.5
Total cross section (Z)	pb	40,000	30	10	8
Event rate	Hz	92,000	8.4	1	0.1
"Pile up" parameter [µ]	10-6	1,800	1	1	1

Experimentally, Z pole most challenging

- Extremely large statistics
- Physics event rates up to 100 kHz
- Bunch spacing at 20 ns
 - "Continuous" beams, no bunch trains, no power pulsing
- No pileup, no underlying event ...
 - ...well, pileup of 2 x 10⁻³ at Z pole

https://indico.cern.ch/event/1064327/contributions/4893208/ Mogens Dam @ FCC Week, 10/06/2022

Technologies

Capteurs silicium

Buts:

- Capteurs compatible avec un collage (guard ring flottant)
- Minimiser les zones mortes

Vincent.Boudry@in2p3.fr R&T IN2P3 | 17/10/22

Capacitance
 d = 500µm
 d = 320µm
 d = 60µm
 Maquette : Capteurs 4" avec guard ring (prototype physique)
 À faire:
 Caractérisation existants:
 Mesure par faisceau des zones insensibles
 Validation du temps réponse (sim. elec., mesure) pour timing de masse (toutes cellules)
 Evaluation 8" :

tneak/Transit

- **Optimisation** des épaisseurs vs GR (par simu) et de la géométrie (rectangles et "chutes").
- Achat et mesure de prototypes

Modèle 1: Capteur 6" «sans guard ring»

Modèle 2: Capteur 8" «sans guard ring»

- Production: Sourcing et qualification partenaires
- Évaluation LGAD pour couche(s) timing dédiée
- **R&D** PSD, MAPS, Electronique purement digitale

À faire pour le FCC-ee: directement applicable

VFE ASICs Electronique

VFE chip	Technique classique (fonctions)	Conception modulaire adaptable à une		
	Technologie modulaire (système)	variété de manips. TRL7		
	Technologie de production			
	maitrisées par la sous-traitance			

Buts:

- Amplification, Trigger, Mesure (BCID+Temps, Amplitude), Stockage, Lecture chaînée des voies, en local
- Faible consommation (< 25µW/ch)

Vincent.Boudry@in2p3.fr R&T IN2P3 | 17/10/22

Maquette : SKIROC2, 2a (2010, 2017)

– AMS 0.35µm

Modèle: 'SKIROC3'

- Full 0-suppression, Gamme dynamique préservée, Configuration améliorée
- Mesure en temps améliorée

À faire:

- Amélioration la robustesse à l'environnement
 - inclusion de régulateurs, drivers
 - Common Mode Reduction Ratio (CMRR)

À faire pour le FCC-ee:

- Adaptation au mode continu à partir de briques existantes (HGROC, HKROC, AltiROC) si TSMC 130nm
- Réduction de la consommation:
 (5 mW / ch ⊗ Active cooling → 6×6mm² faisable)
 - Lecture continue et randomisée (basse fréquence)
 - Performances dynamiques (groupement de voies, gammes dynamique, ...)

9/30

VFE PCB Electronique, Mécanique

РСВ	Technique classique et non- classique <i>Technologie de production via la</i> <i>sous-traitance</i>	Multicouches mince et plat Multicouche creusé TRL3 non satisfaisant	Modèle : FEV2.1 – Régulation alims (LV), distribution et filtrage HV
-----	---	---	---

2.9 | 1.5 | 1.6 | 1.4 | 3.6

Buts:

- Support mécanique et positionnement des capteurs silicium
- Support electronique aux VFE ASICs
- Transmission des signaux et data, alimentations (LV, HV)

- Signaux rapides

Maguettes: FEV (8,) 10, 11, 12, 13

- Filtrage alims LV local, pas de HV À faire:

- Démonstration des capacités dans un SLAB
- Fonctions **monitoring** (LV, HV, temp, ID)
- Option **COB** ↔ ASICs (⊃ régulation, Drivers)
- Partenariat indus. pour mise en technologie de production, cible TRL6à7
- Ligne de transmission sans adaptation + drivers dans VFE _

À faire pour le FCC-ee:

Adaptation lignes de transmission aux débits et ASICs dédiés

Intégration ASU et SLABs Production / Intégration

- Connection fine, physique et électrique, PCB-Capteur par colle epoxy conductrice
- Positionnement des capteurs δ ~ 10–20 μ m
- Positionnement de ASU dans un SLAB

Vincent.Boudry@in2p3.fr R&T IN2P3 | 17/10/22

Modèle : Bancs automatisés adaptatifs Peak-and-Place Maquette 1: banc collage manuel (prototype physique) Maquette 2:

- banc collage programmé avec mise en forme
- banc assemblage semi-automatique

À faire:

- Validation de tenue mécanique et électrique (vieillissement, tests mécaniques statique et vibratoire, tests chimiques)
- Optimisation du processus procédures de collage (mélanges, traitements de surface, quantités)
- Convertion en technologie via Partenariat indus. Cible TRL6 : Procédé robuste automatisé par vision artificielle (dépôt et contrôle, pick&place, ...) adapté pour production de masse;
- Alternative au collage

À faire pour le FCC-ee: directement applicable

Distribution de Puissance et Haute Tension Electronique, Intégration

- Éviter les appels de courants dans B=3.5T (et forces magnétiques sur l'électronique)
- Limitation de la puissance électrique dissipée
 Vincent.Boudry@in2p3.fr
 R&T IN2P3 | 17/10/22

Modèle : 1 tour de SLABs, complète

Maquette1 : SLAB electrique

- Tampons en bout de SLAB (Super-Capacités)
- Distribution HV par LEMOs
- 8 PCB + 8 Babywafers
- Mesuré en 2018 en faisceau

Maquette2 : SLAB complet (FEV2.1)

- Tampons+Régulateurs (LDO) sur FEV (+ DAQ compacte)
- Distribution et Filtres HV sur FEV
- 8-12 ASUs sur base FEV2.1

À faire:

- Ingénierie système pour optimisation des positionnement d'une hiérarchie de tampons + cycles
- Suppression régulateurs locaux ⇒ ASICs (⇔ CEM)

À faire pour le FCC-ee: Changement de paradigme : pulsé → continu

Redimensionnement complet : Granularité, ASIC, précision, vites 3230

Data Acquisition Electronique

- Acquisition de donnée, clock & contrôle et monitoring de ~2000 VFE ASICs
- En tests en faisc.
- R&D et prototypage pour l'expérience

Vincent.Boudry@in2p3.fr R&T IN2P3 | 17/10/22

Modèle : DAQ sur Module Pilote

Maguette 0: DAQ2

Cartes (CCC, GDCC, DIF) + PYRAME

Maguette 1: DAQ Compacte sur Stack Calo1 Maguette 2: DAQ Compacte sur SLAB Maguette 3: DAQ Compacte sur Stack Calo2 Maguette 4: DAQ Compacte sur Stack Calo3

À faire:

- **Consommation optimisée** (Pulsing, regul. locale)
- Distribution horloges (∆t≤50ps) en bout de SLAB
- **Monitoring** de haut niveau (Histogramme, Bruits, Mesures température, LV, HV, ...)

À faire pour le FCC-ee:

Redimensionnement pour fonctionnement continu, au pic du Z (τ_{BX} = 20–40 ns)

Grande Structures Fibre de Carbone-Tungstène Mécanique

À faire pour le FCC-ee: directement applicable

- Non traversant (sans boulons)
- Minimisation zones mortes

Refroidissement à eau sans fuite Thermique/Intégration

- Caloduc compatible avec espace ECAL-HCAL (3 cm)
- Pas de fuite (fonctionnement en dépression)

Modèle : sur module pilote

Maquette 1: 1:1

- circuit simple

Maquette 2: 3:4

- Maquette structure C-W chauffée

À faire:

- Test sur module pilote complètement équipé

À faire pour le FCC-ee:

- 1) Dimensionnement au fonctionnement continu, si possible, en évitant le refroidissement actif.
- 2) Sinon, recherche d'inclusion d'un refroidissement CO₂ (dans Cu ou W)

Intégration Système (modèles numériques) Mécanique, Thermique, Electronique / Intégration

Buts:

- Modèle d'intégration commun aux sous-détecteurs
- Déterminations et placement des besoins
 - des services (puissance, cooling, fluides, interfaces, ...)
 - de construction (humains, matériels, temps, surface, outils, ...)

R&T IN2P3 | 17/10/22 Vincent.Boudry@in2p3.fr

Handling and positioning tool for integration & tests

Modèle : Outils de conception complet, distribués

Maguette 1: Modèle CAO ILD

- Volumes fiduciaire par sous-détecteur et services
- Simulations mécaniques statiques et dynamiques
- Simulation de montage et prototype d'outils

Maguette 2: Tableaux de comptabilité paramétrés

- Param: couches, ravon, épaisseurs, ...

À faire:

- **Développement** d'outils de simulation multi-physique (mécanique + thermique, EM, ...)
- Définition de règles de **CEM**
- Partenariat pour le developpement conjoint
- **Convergence** CAO mécanique Physique (GEANT4)
- À faire pour le FCC-ee: directement applicable

Système Qualité Production

Buts:

- Vérification de qualité et mesure des caractéristique des éléments et procédures
- Traçage des paramètres pour optimisation et calibration

Modèle : Système de bancs de tests laboratoire et industriel, avec base de donnée

Maquette : Banc de tests & suivi artisanaux

- Wafers, PCBs (électrique, mécanique), ASICs, Plaques tungstène
- Fiches individuelles, tableaux
- Retour rapide ⇒ R&D

À faire:

- **Développement** compétences internes (ingénieur)
 - Procédures : Retour d'expérience, vérifications, ...
- Outils de gestion de production de masse
 - Base donnée, traçage,
 - Analyses semi-automatiques, ML → défauts

À faire pour le FCC-ee: directement applicable

Simulation Physique: GEANT4 Physique

Modèle 1: CALICE SiW-ECAL Physique

en exploitation

Modèle 2: CALICE SiW-ECAL Technologique

- -5×5 mm², 24 couches, timing ~1.5 ns (au mip)
- avec digitisation

À faire:

- Stack Calo2 (24 ASUs, adaptation DAQ compacte)
- Analyse et fourniture d'un lot de données _

À faire pour le FCC-ee:

Optimisation de la géométrie/performances/coût du SiW-ECAL

Buts:

- des spécificités de la haute granularité, nécessaire pour le Particle Flow
- Profils de gerbes EM & HAD, traces secondaires, timing … Vincent.Boudry@in2p3.fr

Simulation Physique: Modèle détaillé Physique / Intégration

- Modèle utilisable pour
 - l'estimation des performances de processus clés
 - le développement d'algorithmes de reconstruction
 - évaluer les marges techniques et instrumentales
 - jeux, épaisseurs, dynamique, ...

Vincent.Boudry@in2p3.fr R&T IN2P3 | 17/10/22

Modèle 2: ILD / CLD dans Key4HEP

Modèle 1: ILD & CALICE SIW-ECAL Stack dans DD4HEP

- En exploitation

Maquette: ILD et CALICE ECAL-physique

- GEANT4 dans MOKKA
 - TESLA et ILD DBD

À faire:

Amélioration de la digitisation, paramétrisation des résolution en énergie & temps

À faire pour le FCC-ee:

- Dimensionnement des éléments HW à partir de la simulation ILD
 - Granularité, ASICs, Puissance/Cooling, DAQ
- Adaptation ILD / CLD

Timing in calorimeters: 0.1-1 ns range

Cleaning of Events

[CLIC CDR: 1202.5940] adapted from L. Emberger Vincent.Boudry@in2p3.fr R&T1N2P3 | 17/10/22

Particle ID by Time-of-Flight

- Complementary to dE/dx
 - here with 100ps on 10 ECAL hits

S. Dharani, U. Einhaus, J. List

Ease Particle Flow:

- Identify primers in showers
- Help against confusion better separation of showers
- Cleaning of late neutrons & back scattering.
- Requires 4D clustering

Timing Studies

2015 CMS HGCAL CERN timing test beam

- Time resolution vs S/N ratio

Vincent.Boudry@in2p3.fr R&T IN2P3 | 17/10/22

– Bulk Timing

CALICE / ILD

21/30

Perspectives

Développement Analyses (Particle Flow, Clustering, tracking, ...) non traités ici

Développements techniques:

- 12+1 technologies dans CALICE + ILD
 - Capteurs, ASICs, PCB, DAQ, Puissance, Structure Fibre de Carbone*, Intégration*,
 - Refroidissement*, Integration Système*, Qualité*, Simulation G4, Simulation Physique paramétrables
 - + Timing
- Beaucoup directement applicables à toutes les HF
 - Evaluations de À faire nécessaires: Puissance/Cooling, Precision, Flux, Perfs... ~ 1 an
 - **Opportunité** de pousser certaines R&D (Timing HW & Utilisation, Capteurs, ASICs, Cooling, ...)
 - Certaines* en standby (manque manpower)

Extras

What is a 'CALICE' calorimeter ?

1) It is not a single calorimeter

- Calorimetric system : ECAL+HCAL + (X₀-thin) High Performance Trackers complementary and well associated → small distance (NO MAGNET on the way)
 2) Optimised for Particle Flow
 - NOT the best calorimeter system (= Best Raw Energy measurement of single part.)
 - Measurement and Identification of all particles \supset (especially) in jets, τ 's, ...

best Boson mass measurement H \rightarrow ZZ, WW; Z, W \rightarrow jj. $\Delta(M_Z, M_W) \Rightarrow \sigma(E_i)/E_i \sim 30\%/\sqrt{E} \sim 3.5-5\%$

3) CALICE = R&D on detectors (prototypes)

SiD, ILD, CLICdp, CECP_{Baseline} = detector concepts implementing CALICE physics performances, \supset PFA ('physics' prototypes) \Rightarrow 'technological' prototypes

ECAL ToF

Kaon

Highly appreciated in flavor physics @ CEPC Z pole TPC dEdx + ToF of 50 ps

At inclusive Z pole sample:

Conservative estimation gives efficiency/purity of 91%/94% (2-20 GeV, 50% degrading +50 ps ToF) Could be improved to 96%/96% by better detector/DAQ performance (20% degrading + 50 ps ToF)

CEPC WS@IHEP CEPC

Services: integration & cooling

- Pipe insertion process introduces some efficiency loss due to the thermal contact resistance.
- The benefit remains significant with regard to a passive cooling

= 2× cont. operation of a SLAB

26/30

Pipe insertion on a cooling prototype

Microelectronics SKIROC2 / 2A Analogue core

- 64 channels
- Auto-triggere
 - per cell adj.
 - 1 cell triggers all
- Preamp
 + 2 Gains + Auto-select
 + TDC (~1.4ns)
- 15 (×2) analogue memories
- Dyn range 0.1 ~ 2500 mips
 - mip in 320 µm (4 fC)
 - 12 bits ADC's
- 616 config bits
- Low consumption
 - 25 μW/ch with 0.5% ILC-like duty cycle
- Power-Pulsed

Sensor R&D

Improved uniformity

- Less dead spaces ?
- Min inter wafer gap ~ 100µm (on same board)
 ⇒ Go for larger sensors.
 High E e⁻
- + Guard Rings ~ wafer thickness
 - Floating = extra signal by X-talk
 - Grounded = lost signal

- Larger Silicon Matrices:

2" (51 mm)	275 µm	1969	
3" (76 mm)	375 µm	1972	
4" (100 mm)	525 µm	1976	
4.9'' (125 mm)	625 μm	1981	1
150 mm (5.9", ~6")	675 μm	1983	We are
200 mm (7.9", ~8")	725 µm.	1992	here
300 mm (11.8", ~12")	775 µm	2002	псте
450 mm (17.7") [proposed]	925 µm	future	
675 mm (26.6") [Theoretica	alUnknown.	future	

More signal ➡ Improved S/N, E resolution and Time Measurement

- Higher Intrinsic Signal ➡ thicker sensors:

 $\begin{array}{l} e/h\# \propto th, \ noise \propto C \propto 1/th \Rightarrow S/N \propto th^2 \\ EM \ resolution: \ \sigma(E)/E \propto 1/^5 \sqrt{(1+th/100 \mu m)} \end{array}$

- Need R&D on Improving the edge quality:
 electron beam cutting ? Edge treatment ? ... ?
- Physical Gain: LGAD (Limited Gain in Avalanche Diode)

See Timing in Calorimeters Nural Akchurin

- Gain \Rightarrow S/N \checkmark , $\sigma(t) \searrow$ + instabilities ?
- Wait experience from ATLAS HGTD, CALICE

PSD = Position Sensitive Detector

- Reduces the number of channels, power (& costs ?)

Cost Structure of ILD

MAPS & DECAL

FOCAL DECAL prototype

FOCAL = 2 layers of MAPS but How to build a full detector ? Services: Power + Cooling ? Gains by going fully digital ? For what physical gain ? Improved separation Improved resolution ? 4 MIMOSA-26 / Layer CMOS sensors (IPHC) 6×6 cm²

- 30×30 µm² pixels
- 39 M pixels
 - = full readout

