

FACULTÉ
 DES SCIENCES
 PARIS-SACLAY
 D'ORSAY

MLLTRAP : un spectromètre de masse à base de pièges de Penning

Enrique Minaya Ramirez

IJCLAB

MLLTRAP : double Penning trap mass spectrometer

i

Penning trap mass spectrometers at radioactive ion beam facilities

Name	Year	Location	Facility	Reaction(s)
ISOLTRAP	1987-present	ISOLDE, CERN	ISOL	Spallation, fission
CPT	1998-2009	ATLAS, ANL	In-flight	Transfer, fusion-evaporation
СРТ	2009-present	CARIBU, ANL	ISOL	²⁵² Cf fission
SHIPTRAP	2004-present	SHIP, GSI	In-flight	Fusion-evaporation
JYFLTRAP	2004-present	JYFL, Jyväskylä	IGISOL	Various
LEBIT	2005-present	NSCL, MSU	In-flight	Fragmentation
TITAN	2007-present	ISAC, TRIUMF	ISOL	Spallation, fission
TRIGATRAP	2017-present	TRIGA, Mainz	Reactor	Fission

 \rightarrow The year of operation starts with the first mass measurement of a radioactive ion

≈ 10⁻⁸

J. Dilling et al., Annu. Rev. Nucl. Part. Sci. 68 (2018) 45

Low precision

Low accuracy

High precision

Low accuracy

Low precision High precision High accuracy High accuracy

- Relative uncertainty
- Accessible half-lives > 10 ms
- Typical Resolving power ≈ 10⁷

MLLTRAP @ ALTO

Peter G. Thirolf, Christine Weber et al.

2009 \rightarrow Off-line commissioning

The truck left MLL the 14th of July 2016

New area rehabilitated

7 T superconducting magnet with 2 homogenous regions →Energized in November 2017 @ ALTO-LEB

MLLTRAP @ ALTO-LEB

17/10/2022

MLLTRAP @ ALTO-LEB

17/10/2022

Vacuum tested Control system ready

X-Y steerers

- Electrostatics Quadrupoles
- \rightarrow Based on DESIR beamlines

2022

MLLTRAP @ ALTO-LEB : Beam transport

Beam transport

Beam profile monitor from

Secondary Emission Monitor (SEM) for multi-plane ion beam profile measurement (delivery expected in November 2022 \rightarrow May 2023)

Profiler and actuator

17/10/2022

MLLTRAP @ ALTO-LEB : Beam transport

17/10/2022

Enrique Minaya - Journée R&T IN2P3 - IP2I LYON

13

MLLTRAP @ ALTO-LEB : Beam preparation

MLLTRAP @ ALTO-LEB : Beam preparation

SIMION simulations at the injection point (blue color) and after having been cooled and bunched (in red).

Emittance at injection ~ 20 π .mm.mrad and ~ 3 π .mm.mrad at ejection, both at 60keV.

E. Minaya Ramirez et al., Nucl. Instr. Meth. B 463 (2020) 315

MLLTRAP @ ALTO-LEB : Beam preparation

- All the mechanical parts have been delivered. The assembly of the different parts are in progress.
- The alignment of the supports are currently in progress at ALTO

MLLTRAP @ ALTO-LEB : Beam manipulation

- Alignment of the vacuum tube axis with magnetic field lines was impacted by the installation and validation of the magnetic probe. The alignment is now finished (misalignment angle : 1.1 ± 0.1 mrad)
- Bender, injection electrodes and diagnostic system (faraday cup and microchannel plate) operational (tested with an alkali ion source).
- Upgrade of the control system in progress. Coupled with the installation of the MCP delay line (for PI-ICR).
- Installation of Penning traps in progress.

MLLTRAP @ ALTO – Beam manipulation

- Probe developed by Caylar to track magnetic field evolution in real time.
- Probe located in the gap between bore's magnet and the vacuum tube.
 → non-linear field drifts during long measurements

- First probe developed between (2018-2019) → miniaturized probe validated in September 2020.
- Coupled to the bore temperature. Currently 10⁻⁷ precision.

High-precision mass measurements at ALTO

Enrique Minaya – Séminaire Pôle Physique des accélérateurs

MLLTRAP @ ALTO – R&D for Beam manipulation

In-trap decay spectroscopy for MLLTRAP

- Decay experiments with carrier-free particles stored in a Penning trap enable studies on ideal ion samples.
- The improved energy resolution can be exploited for highresolution α- and electron-decay spectroscopy.
- \rightarrow Design fixed, all mechanical parts and insulators received in 2020.
- \rightarrow Gold plating of all the electrodes performed in October 2022
- ightarrow The next step is the mechanical assembly

P. Chauveau et al., NIMB 982 (2020) 164508 P. Chauveau et al., NIMB 463 (2020) 371

17/10/2022

Thank you for your attention !