

Calorimétrie électromagnétique de haute résolution pour le futur collisionneur électron-ion (EIC)

Carlos Muñoz Camacho (IJCLab)

FACULTE

universite

DES SCIENCES

CNIS

ЪJ

Université de Paris

Journées R&T 2022 (17-19 octobre, Villeurbanne)

Electron-Ion Collider (EIC)

Collisionneur électrons - ions ≡ femtoscope dédié à l'étude des gluons

- Highly polarized electron / Highly polarized proton and light ions /Unpolarized heavy ions
- Center-of-mass energy: ~30-135 GeV
- Luminosity: ~ 10³³⁻³⁴ cm⁻²s⁻¹

Sujets d'intérêt en ChromoDynamique Quantique (QCD) :

Détermination des distributions de partons (GPDs, TMDs, nPDFs...)

CNIS

- Tomographie 3D des nucléons
- Quantification de la contribution des partons aux propriétés intrinsèques des nucléons (spin, masse, pression)
- Dynamique du confinement
- Saturation de la densité des gluons à haute énergie ?
- Effets de milieu

Complémentarités expériences à JLab & LHC

Principal intérêt du groupe : réactions exclusives

(par ex. DVCS: Deep Virtual Compton Scattering)

17/10/2022

EIC-Calo

Irène Joliot-Curie Laboratoire de Physique des 2 Infinis

Milestones détecteur

CNIS

- Déc 2021: Conception détecteurs
- Jan 2024: R&D completed (CD-2)
- Avr 2025: TDR completed (CD-3), début construction
- 2030: Commissioning détecteur
- ➢ 2031: Pre-ops
- 2034: Démarrage programme de physique (CD-4)

Calorimetrie haute résolution

FACULTE DES SCIENCES universite

CNIS

ЪJ Université de Paris

Electromagnetic (EM) calorimetry is key to any **EIC detector concept**

- Almost every channel needs to measured the scattered electron - EM e-endcap calorimeter : -3.5 < η < -1

Region of physics enabled by the EEEMCal

High resolution in the forward region (endcap) can only be achieved with homogeneous materials, such as crystals and glass

R&D in 2015 with funds from the generic R&D program by the US DoE:

- Building on previous experience with EM calorimeters (JLab Hall A PbF₂, JLab Hall-B PWO IC, JLab Hall-B HPS PWO, PANDA PWO...)
- In synergy with ongoing IJCLab projects for JLab (NPS lead tungsten calorimeter)

17/10/2022

FACULTÉ

ORSAY

UNIVERSITE PARIS-SACLAY

DES SCIENCES

CNIS

W

Université de Paris

Cristaux de tungstène de plomb (PWO)

900

SICCAS manufacturer has poor quality control

- CRYTUR produces high quality crystals, but production capabilities still limited (+ high cost) \geq
- > Optical bleaching with blue light validated; infrared less efficient

Nucl. Instrum. Meth. A956 (2020) 163375. ArXiv: 1911.11577

Radiation hardness (in collaboration with LCP)

Lecture par SiPM

- Solid-state photodetector
- Current pulse of 20-50ns with 10⁵-10⁶ electrons (i.e. gain similar to a PMT)
- Insensitive to magnetic fields

- Small size
- Significant dark noise
- Not very radiation hard
- With PWO, readout (few p-e) requires analog amplification
- ➢ For calorimetry at EIC, large dynamic range needed (~50 MeV − 15 GeV)

Collaboration with INFN, BNL, JLab

SiPM with high pixel density

FACULTE

D'ORSAY

Plage dynamique attendue à EIC: 0.05 – 15 GeV (1:300)

MPPC S14160-3010PS

Contact us >

PHOTON IS OUR BUSINESS

Low breakdown voltage, wide dynamic range type MPPC with small pixels

The S14160 series is a small-pixel MPPC that features wide dynamic range. Even with an extremely narrow pixel pitch of 10 µm, it features high fill factor ,reduced crosstalk, and dark count.

Features

-Small pixel pitch (10 µm) -High fill factor -Wide dynamic range -Low voltage operation (VBR=38 V typ.) -Low crosstalk and after pulses -high gain: 10⁵ order

Specifications

Package type	Surface mount type
Number of channels	1 ch
Effective photosensitive area / ch	3 × 3 mm
Number of pixels /ch	89984
Pixel size	10 µm
Spectral response range	290 to 900 nm
Spectral response range Peak sensitivity wavelength (typ.)	290 to 900 nm 460 nm
Spectral response range Peak sensitivity wavelength (typ.) Dark count/ch (typ.)	290 to 900 nm 460 nm 700 kcps
Spectral response range Peak sensitivity wavelength (typ.) Dark count/ch (typ.) Terminal capacitance/ch (typ.)	290 to 900 nm 460 nm 700 kcps 530 pF

Citiroc 1A

Readout ASIC

CNIS

TRL Technology Readiness Level	8 - Full system using ASIC running - learn more	
Available versions	 Citiroc 1 : discontinued Citiroc 1A : available 	
Detector Read-Out	SiPM, SiPM array	
Number of Channel	32	
Signal Polarity	Positive	
Sensitivity	Trigger on 1/3 photo-electron	
Timing Resolution	better than 100ps RMS on single photo-electron	
Dynamic Range	0-400 pC i.e 2500 photo-electrons @ 10 ⁶ SiPM gain	

- ➢ 32-channel front-end ASIC designed for SiPM
- ➤ 1% linearity up to 0-400 pC 2500 p.e (~ 14000 p.e @1.8x10⁵ SiPM gain)~
- Low power dissipation (~ 7 mW/channel)

Front end electronics

A1702

32 Channel SiPM Readout Board for Cosmic Rays Veto

B Request a quote

Features

Readout board for SiPM, tailored for Cosmic Rays Veto systems in Neutrino experiments.

Based on 32-channels WeeROC CITIROC ASIC

Coincidence of signals from each pair of adjacent even-odd channels

Provides bias voltage in the range of 20-90 V, individually adjustable for each of 32 SiPMs

Amplification and shaping of the SiPMs output pulse on each of 32 channels

Discrimination of shaped signal at configurable level from 0 to 50 SiPMs photo-electrons

Timing resolution down to 1 ns with stable external reference signals

Block-scheme of analog signal processing circuit.

Initial tests: SiPM individuel + LED

CNIS UNIVERSITE

FACULTÉ DES SCIENCES

D'ORSAY

Prototype module

D'ORSAY

- Ensemble de 16 SiPM pour lire \succ un cristal unique
- Conection directe aux systeme d'acquisition CAEN (A1702)
- > En cours de tests en ce moment

imebase -39.8 ns

10.0 ns/dk

4:00 GS/

Dark count rate as a function of threshold

CNIS

UNIVERSITE PARIS-SACLAY

FACULTÉ DES SCIENCES

D'ORSAY

W

Université de Paris

Rough estimate: ~3 mV per p.e

17/	/10	/20	22

10 ns

20 mV

20.0 mWdlv -59.5 mV ofst

TELEDYNE LECRO

EIC-Calo

Upcoming tasks

- > Développement d'un banc de test avec regulation de temperature, pour mesurer :
 - > Efficacité de détection (Photon Detection Efficiency, PDE)
 - > Gain
 - Taux de comptage d'obscurité (dark rate)
 - > Cross-talk
 - Plage dynamique
 - > Linéarité de réponse
- Adaptation du banc de test pour caractériser l'ensemble formé d'un cristal PbWO₄ et le système de 16 SiPM
- > Construction d'un proto 4x4 cristaux et test faisceau

Objectif final du projet

Energy resolution:

DES SCIENCES

Geometry, leaks, relative calibration, etc Photostatistics

Flectronic noise, etc

The constant term (A) limits the energy resolution at high energy

Factors affecting the constant term:

- Dead material between active modules (eg. crystal supports, air gaps...) \succ
- Control of relative gain (temperature dependence, radiation damage...) \geq
- Calibration, electronic drifts, etc \succ

Optimization by simulation, but ultimately a prototype and a beam test is needed for a realistic estimate

E

Beam tests possible with photon beam in Hall D at JLab

Conclusion

- Le calorimetre electromagnetique du bouchon electron est un des détecteur le plus importants à EIC
- IJCLab a joué un role moteur dans sa conception et la R&D \succ necessaire pendant les dernieres années
- Expertise et synergie avec projets equivalents à Jefferson Lab \succ
- \geq Combinaison de PWO et SiPM est une option attractive pour la lecture, mais qui n'est pas encore validée
- L'equipe souhaite continuer son implication à EIC avec une \succ participation à la contruction de ce calorimetre

FACULTE

universite

DES SCIENCES

CNIS

ЪJ

Université de Paris

