P2IO BSM- ν workshop

Neutrino Oscillation Physics in JUNO

Diana Navas On behalf of the JUNO collaboration

11 April 2022

Open questions in ν oscillation physics

- Mass ordering "normal" or "inverted"? Is v_1 lighter than v_3 ?
- Precise values of neutrino mixing angles and mass splittings

	PDG-2020	JUNO
Δm_{21}^2	$(7.53\pm0.18) imes 10^{-5} \text{ eV}^2 (2.39\%)$??
$\Delta m_{32}^{\overline{2}}$ (NO)	$(2.453 \pm 0.034) imes 10^{-3} ext{ eV}^2 (1.39\%)$??
Δm_{32}^2 (IO)	$-(2.546\pm0.036) \times 10^{-3} \text{ eV}^2 (1.41\%)$??
$\sin^2 \theta_{12}$	0.307±0.013 (4.23%)	??
$\sin^2 heta_{13}$	0.0218±0.0007 (3.21%)	??

- Do neutrino oscillations violate CP symmetry? $\delta_{\mathrm{CP}} \neq 0, \pi$
- What is the "octant" of θ_{23} ? Is the mixing maximal $\theta_{23} = 45^{\circ}$?
- More than 3 neutrinos?

JUNO experiment: oscillation physics

Multi-purpose liquid scintillator experiment

- Reactor \overline{v}_e at ~53 km ~ 45 \overline{v}_e /day Neutrino Mass Ordering (NMO) Δm_{21}^2 , Δm_{32}^2 , $\sin^2 \theta_{12}$
- Solar ν_e from ⁸B ~ 17 ν_e /day Δm_{21}^2 , sin² θ_{12}
- Atmospheric v_{μ}/\bar{v}_{μ}

~ 1233/1035 events (200 kton-years) NMO $\sin^2 \theta_{23}$

• Reactor $\bar{\nu}_{e}$ with TAO detector (~30 m) ~ 2000 $\bar{\nu}_{e}$ /day $\Delta m_{41}^{2} \sin^{2} 2\theta_{14}$? JUNO – Jiangmen Underground Neutrino Observatory TAO – Taishan Antineutrino Observatory

Optimized baseline for NMO determination with $\bar{\nu}_e$

JUNO detector

- World's largest Liquid Scintillator
 20 kton LAB-based liquid scintillator
 High PE yield: ~1350 PE / MeV
- Detection channel: Inverse Beta Decay $\bar{\nu}_e + p \rightarrow n + e^+$ Time + position coincident signal $E_{vis} \simeq E_{\bar{\nu}_e}$ - 0.78 MeV
- - Two independent PMT systems >75% photo-coverage
- Overburden: ~700 m Cosmic background suppression

Reactor $\overline{\nu}_e$ spectrum at JUNO

JUNO will be the first experiment to observe two modes of neutrino oscillations simultaneously

MO sensitivity from spectral shape analysis

JUNO detector response

 Energy non-linearity Scale uncertainty < 1% Ensure the oscillation peak positions

P2IO BSM-Nu

Energy resolution $\sigma_E < 3\%$ at 1 MeV Resolve the fast component oscillation peaks

More info: Calibration Strategy of the JUNO experiment - JHEP 03 (2021) 004

Neutrino Oscillation Physics in JUNO

JUNO-TAO

- TAO will deliver precise \bar{v}_e energy spectrum with sub-percent energy resolution in most of energy region of interest Phys.Rev.Lett. 114, 012502 (2015)
- Eliminate the possible model dependence due to fine structure in the reactor antineutrino spectrum
- U de la construction de la const

• The bin-to-bin spectral shape uncertainty uncertainty can be reduced to below 1% level

- 2.6 t GdLS
- ~30 m from reactor core
- ~2000 IBD events/day
- 12k PE/MeV
- >95% photo-coverage (4100 SiPM)
- Energy resolution ~2% @1 MeV

Neutrino Mass Ordering Sensitivity

- JUNO is the only experiment exploiting vacuum oscillations
- No dependence on θ_{23} or $\delta_{\text{CP}}.$ Very little dependence on matter effects

 $\Delta \chi^2_{\rm MO} = \left| \chi^2_{\rm min}(\rm NO) - \chi^2_{\rm min}(\rm IO) \right|$

- --- Unconstrained (JUNO only) $\rightarrow 3\sigma$ sensitivity in 6 years of data
- Using external $|\Delta m^2_{\mu\mu}|$ (1% precision) $\rightarrow 4\sigma$ sensitivity in 6 years

• Strong synergies with other experiments:

Through Δm_{32}^2 for accelerator neutrinos (NOvA and T2K) Sci Rep 12, 5393 (2022)

Through Δm^2_{31} for atmospheric neutrinos (KM3NeT/ORCA and IceCube) Phys. Rev. D 101, 032006 (2020)

 $> 5\sigma$ sensitivity (in 6 years) in case of joint analysis

P2IO BSM-Nu

Neutrino Oscillation Parameters

DUBLICATION

• Precision measurement of oscillation parameters

	Δm^2_{31}	Δm^2_{21}	$\sin^2 heta_{12}$	$\sin^2 heta_{13}$
JUNO 6 years	${\sim}0.2\%$	${\sim}0.3\%$	${\sim}0.5\%$	$\sim 12\%$
PDG2020	1.4%	2.4%	4.2%	3.2%

- JUNO will yield sub-percent precision after the nominal exposure of 6 years
- Improve today's precision by almost one order of magnitude in 3 of 6 oscillation parameters
- JUNO will help in testing the unitarity of the PMNS matrix and the mass sum rule

Solar ν_e from ⁸B

- Neutrino-electron elastic scattering process
- 2 MeV threshold on the recoil electron energy
- Higher energy resolution than water Cherenkov detectors
- Much larger target mass than previous LS detectors
- LS intrinsic radioactivity (10⁻¹⁷ g/g 238 U and 232 Th)
 - Signal/background (10 years): 60k/30k

- $^{8}\text{B}\,\nu_{e}$ sensitive to the matter effect: Day/Night asymmetry
- 0.9% sensitivity to Day/Night asymmetry (1.1% in SK)
- 20% sensitivity to Δm^2_{21} and 8% sensitivity to $sin^2\theta_{12}$
- Complementarity to JUNO reactor Δm^2_{21}

Atmospheric $\nu_{\mu}/\overline{\nu}_{\mu}$

- JUNO will be able to detect several atmospheric neutrinos per day
- Preferred detection channels: $\nu_{\mu}/~\nu_{e}$ CC interactions
- ν_{μ} and ν_{e} interactions produce slightly different light pattern \rightarrow flavor discrimination through the event time profile
- ~1σ sensitivity to mass ordering in 10 years
- θ₂₃ accuracy of 6°
- Potential combination with reactor analysis

J. Phys. G43:030401 (2016)

Bonus track: JINO

JINO

 \star Response test / validation / calibration

- ★ JINO-I
 - Single Calorimetry: 127 SPMT (bottom)
 - Dual Calorimetry Calibration: 127 SPMT+1 SPMT (source monitoring)
- ★ JINO-II
 - Dual Calorimetry Readout: 1 LPMT + SPMT

★ Different light sources (no degeneracies)

- Muon Cherenkov only (electronics performance)
- Muon Cherenkov + Scintillation (JUNO-like)
- UV LED + Scintillator
- LED only (SN readout capabilities)

Conclusions

- JUNO will be the first experiment to observe two modes of neutrino oscillations simultaneously
- JUNO will achieve an unprecedented 3% energy resolution at 1 MeV with an energy scale calibration uncertainty of 1%
- TAO will provide high precision reactor neutrino spectrum
- Neutrino mass ordering determination >3 σ in 6 years via reactor $ar{
 u}_{e}$
 - +1 σ using 1% external uncertainty for $\left|\Delta m^2_{\mu\mu}\right|$
 - >5 σ when combined with accelerator and/or atmospheric experiments
 - The only experiment able to resolve MO via vacuum dominant oscillations
- Measurement of Δm^2_{21} , Δm^2_{32} , $sin^2\,\theta_{12}$ at sub-percent precision level with reactor $\bar\nu_e$
- Independent measurement of Δm^2_{21} and $sin^2\,\theta_{12}$ via solar neutrinos from ^8B
- θ_{23} measurement via atmospheric neutrinos

JUNO Collaboration

THANK YOU FOR YOUR ATTENTION

	Country	Institute	Country	Institute	Country	Institute	
	Armenia	Yerevan Physics Institute	China	IMP-CAS	Germany	FZJ-IKP	
	Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Mainz	
	Brazil	PUC	China 🚽	Tsinghua U.	Germany	U. Tuebingen	
	Brazil	UEL	China	UCAS	Italy	INFN Catania	
	Chile	PCUC	China 🤎	USTC	Italy	INFN di Frascati	
-	Chile	SAPHIR	China	U. of South China	Italy	INFN-Ferrara	
	China 🥄	BISEE	China	Wu Yi U.	Italy	INFN-Milano	
	China 🖌	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Milano Bicocca	
	China	CAGS	China	Xi'an JT U.	Italy	INFN-Padova	
	China	ChongQing University	China	Xiamen University	Italy	INFN-Perugia	
	China	CIAE	China 🖌	Zhengzhou U.	Italy	INFN-Roma 3	
	China	DGUT	China	NUDT	Latvia	IECS	
	China	ECUST	China	CUG-Beijing	Pakistan	PINSTECH (PAEC)	
	China	Guangxi U.	China	ECUT-Nanchang City	Russia	INR Moscow	i
	China	Harbin Institute of Technology	Croatia	UZ/RBI	Russia	JINR	A.
	China	IHEP	Czech	Charles U.	Russia	MSU	
. '	China	Jilin U.	Finland	University of Jyvaskyla	Slovakia	FMPICU	10
	China	Jinan U.	France	IJCLab Orsay	Taiwan-China	National Chiao-Tung U.	
	China	Nanjing U.	France	CENBG Bordeaux	Taiwan-China	National Taiwan U.	
	China	Nankai U.	France	CPPM Marseille	Taiwan-China	National United U.	
	China	NCEPU	France	IPHC Strasbourg	Thailand	NARIT	i)
	China	Pekin U. 🛛 🖌 🛥	France	Subatech Nantes	Thailand	PPRLCU	
	China	Shandong U.	Germany	FZJ-ZEA	Thailand	SUT	
	China	Shanghai JT U.	Germany	RWTH Aachen U.	USA	UMD-G	
	China	IGG-Beijing	Germany	TUM	USA	UC Irvine	
	China	IGG-Wuhan	Germany	U. Hamburg			

P2IO BSM-Nu

-

Back-up

P2IO BSM-Nu

$\overline{\nu}_e$ reactor analysis update

Good news

- ▲ Background control: more realistic measurements and simulations
- ▲ Optimized event selection and muon veto strategies: IBD selection efficiency: $73\% \rightarrow ~82\%$
- ▲ More realistic PMT and liquid scintillator optical \rightarrow model Higher LS light yield
- ▲ Higher 20-inch PMT photon detection efficiency: ~27% → ~29%
- ▲ Combined analysis with TAO

Bad news

- \checkmark Two of Taishan reactor cores will not be built \rightarrow Reactor flux decreased by ~ 25%
- **\checkmark** Experiment hall shifted by ~ 60 m (lower overburden) \rightarrow Cosmic muon flux increased by ~ 30%
- World reactors: more background

$\overline{\nu}_e$ signal and backgrounds

82.2

Background	Rate (day^{-1})
Geo-neutrinos	1.2
Accidentals	0.8
$^{9}\mathrm{Li}/^{8}\mathrm{He}$	1.4
Fast neutrons	0.1
$^{13}\mathrm{C}(lpha,\mathrm{n})^{16}\mathrm{O}$	0.05

ARXIV:2104.02565

P2IO BSM-Nu

After Selection

47.1

Dual Calorimetry

Photon-counting (PC)

95% of the charge detected in single PE regime for IBD events Electronics could provide analog charge information (signal pulse amplitude and time over threshold)

Energy (PC) & Energy (QI) are complementary

SPMT charge detection is robust and redundant by design

Charge linear reference to the LPMT.

Energy Scale

Non-linearity is composed of:

- 1. Physics non-linearity:
 - Scintillation quenching, following Birks' law.
 - Cherenkov emission dependence on particle's velocity.
- 2. Instrumental non-linearity:
 - PMT instrumentation and electronics, channelwise response

Energy Scale after Dual Calorimetry Calibration

$\mathbf{E}_{dep} = \mathbf{Q}_{PE} \times \mathbf{f}_{PE/MeV} \times \mathbf{f}_{LSNL} \times \mathbf{f}_{NS} \times \mathbf{f}_{NU} \times \mathbf{f}_{QNL}$

Almost negligible role of QNL effects upon the DCC application ~0.3%

The DCC can control the QNL induced NU bias to 0.1% level

P2IO BSM-Nu

Energy Resolution after Dual Calorimetry Calibration

Rate Uncertainties

Component	Input Uncertainty (%)
Flux Systematics	
Thermal Power (P)	0.50
Energy per Fission	0.20
Fission Fraction	0.60
Neutrino Yield per Fission	2.00
Detection Systematics	
IBD Selection Efficiency	0.20
Fiduacialisation (2 cm vertex bias)	0.35
Proton Number (DYB)	0.92
Background Systematics	
Geo-neutrino	0.84
Accidental	0.02
⁹ Li/ ⁸ He	0.74
Fast neutrons	0.23
13 C($lpha$,n) 16 O	0.06

Shape Uncertainty

Oscillation Parameters correlation

Oscillation parameters: systematics

stat	Statistical (reactor $\bar{\nu}_{e}$ events only)	Δm ² ₂₁	JUNO Simulation Preliminary	Δm ² ₃₁	JUNO Simulation Preliminary
eff	Detection efficiency	stat		stat	
	Detection enclosely $\bar{\mu}$ furt respector uncorrelated	stat+eff		stat+eff	
Tune	Reactor ν_e hux reactor-uncorrelated	stat+runc		stat+runc	
rcor	Reactor ν_e flux reactor-correlated	stat+rcor		stat+rcor	
b2bTAO	Reactor $\bar{\nu}_e$ spectrum shape based on TAO measurement	stat+b2bTAO		stat+b2bTAO	
snf	$\bar{\nu}_e$ flux from spent nuclear fuel)	stat+snf		stat+snf	
noneq	Non-equilibrium correction to reactor $\bar{\nu}_e$ flux	stat+noneg		stat+noneg	
abc	Energy resolution (JHEP03,004(2021))	statishs		stat Labo	
nl	Liquid scintillator non-linearity (NIMA940.230(2019))				
bg	Backgrounds	stat+ni		stat+ni	
ME	Earth's matter density	stat+bg		stat+bg	
	All gratementing about	stat+ME		stat+ME	
an syst	All systematics above	stat+all syst		stat+all syst	

The dominant systematics for precision measurement:

- $\Delta m_{31}^2 / \Delta m_{32}^2$: reactor spectrum shape ٠
- Δm_{21}^2 : background, non-equilibrium effect ۲
- $\sin^2 \theta_{12}$, $\sin^2 \theta_{12}$: normalization rate ۲

stat+rcor

stat+b2bTAO

stat+snf

stat+noneq

stat+abc

stat+nl

stat+bg

stat+ME

stat+all syst

A.U.

Atmospheric neutrino flavour identification

P2IO BSM-Nu

Neutrino Oscillation Physics in JUNO

UNO

Day/Night asymmetry

P2IO BSM-Nu

Sterile neutrinos

Motivation – observed tensions with 3-flavor paradigm:

- Reactor $\overline{\nu}_e$ deficit with respect to the state-of-the-art prediction models
- Anomalous $\overline{\nu}_e$ appearance in the ν_μ beam at the LSND and MiniBooNE
- Deficit in number of \boldsymbol{v}_{e} from radioactive calibration source in gallium experiments

TAO detector

- Inverse beta decay with nGd tag
- Baseline ~ 30 m
- Expected rate: 2000 $\bar{\nu}_e/\text{day}$
- Relevant range: 0.5 eV² < Δm_{41}^2 < 5 eV²

