Why is the neutrino
mass imponrtant

- The rise and fall of massless neutrinos
- Implications of neutrino oscillations

- Majorana’s mass and how to test it
- Significance of mass and perspectives
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Bonjour a tous et merci pour Pinvitation!

Je suis desolée de ne pas pouvoir etre avec vous en personne, mais hier j'étais
occupée a présenter un séminaire géneéral a I' APS a New York, qui avait un but.

J'essayais de convaincre les communautes scientifiques, qui ne travaillent pas
sur la "desintegration double béta sans neutrino'', qu'un processus ¢lementaire
portant un nom aussi laid et non encore observe est neanmoins tres important.

J'al fait ce que j'ai pu, et j'aimerais partager le resultat avec vous.

PS : je ne pense pas que nous ayons besoin de convaincre Andrea, L.éonard, Anastasiia, Giovanni, etc. — mais il y a le reste du monde.




neutrinos and the standard model of elementary particles




Matter and antimatter particles
Credit: Fermilab

This useful picture conveys a huge
amount of information, evoking
the concepts of:

¥ particles/antiparticles

¥ guarks/leptons
* family replication

But it raises a question:

what distunguishes neutrinos
and antneutrinos, as they are
both chargeless?




how neutrinos were introduced (Pauli, 1930)

anti-neutrino ‘

Al
. . electron

> . ) i

tritium

helium-3

the nuclei contains electrons, protons & neutrinos; the latter steal
some energy and (as all other matter particles) have spin 1/2



the theory ot f-rays (Fermi, 1933)

anti-neutrino ‘
electron

) .

neutron
proton

for the first time, some particles of matter disappeatr,
others appeat: just like photons do!



this behavior raised a theoretical dilemma

photon

- )

proton positron

why disintegrations such as p — ¢™ + y do not occur?
Weyl (1929); Stuckelberg (1936); Wigner (1949)



foundations for the standard model are laid in fifties




on the structure of the standard model

- the standard model predicts that the 3 lepton numbers are all conserved
in perturbation theory. Their differences Li-Lj and B-L are exact
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on the structure of the standard model

- the standard model predicts that the 3 lepton numbers are all conserved
in perturbation theory. Their differences Li-Lj and B-L are exact

4 )

-0~ -0~

- Helicity distinguishes neutrinos from antineutrinos - a feature of SM,

based on the masslessness of neutrinos.



however, neutrinos do have mass.

a quantum phenomenon, neutrino
oscillations (1957-1967), indicates
this beyond any doubt.

the proof, achieved with great efforts lasting more than 30 years, was recognized by
the Nobel Prize awarded to Kajita and McDonald (2015)

oscillations, B. Pontecorvo (1957-1967); neutrino mixing, Y. Katayama, K. Matumoto, S. Tanaka, E. Yamada (1962),
Z.. Maki, M. Nakagawa, S. Sakata (1962) M. Nakagawa, H. Okonogi, S. Sakata, A. Toyoda (1963)
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remarks on neutrino appearance experiments, status of the lepton and baryon numbers




neutrino appearance experiments proved that
there is only one basic type of lepton

(=at the scrutiny of T2K, NOVA, OPERA, SK, DeepCore, only total lepton number L survived )

We have tested that all global symmetries of SM are violated, except L and B.
Conversion among families I1s possible, we have only two fundamental types of
matter particles: leptons and quarks
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but in the SM, B and L are not separately conserved:
B-L is conserved exactly; instead, B, L, B+L are not.

thus, in SM L and B are intimately connected

a Ty [ s (5] Down




neutrino appearance experiments + SM imply
that the only potentially exact symmetry is B-L

A( Le'Lp.) A( Lp.' Lt) A( Lt' Le)

= there Is an intimate connection between leptons and quarks.
One question that immediately arises i1s what is the degree of violation of B, L, etc
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experimental tests of B and of L

O = ¢ >

-9
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experimental tests of B and of L
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experimental tests of B and of L
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experimental tests of B and of L

O = ¢ >

Proton decay (B-L. conserved)

-9

Electrons Creation (B-L vu:lated)
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Electrons Creation - aka - Neutrinoless Double Beta Decay

Toward the Discovery of Lepton Creation with Neutrinoless Double-/3 Decay
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Majorana’ mass and the structure of the standard model, how to
test it with neutrinoless double beta decay / electron creation



4 irection of motion S

helicity tells neutrinos from antineutrinos
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4 irection of motion S

-0~ -0~

but in rest system that exists they look the same
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the case for Majorana neutrinos

hypothesis: neutrinos are matter & antimatter



Majorana's neutrinos enable electron creation

2 n 9 2 p i 2 e a virtual neutrino of

Majqrana

n \
P

Ve-
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Neutrinos with Majorana mass are matter and antimatter, as seen in the

system at rest. They can act as a bridge between matter and antimatter,
in transformations whose amplitude is proportional to the neutrino mass




constraints on the Majorana mass

relevant to 2n->2p+2e

Spectrum with normal hierarchy: Dependence on Ue3

T T L

Experimental upper bound [2]
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Testing the Inverted Neutrino Mass Ordering with Neutrinoless Double-Beta Decay
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(Dated: July 21, 2021)

We quantify the extent to which future experiments will test the existence of neutrinoless double-
beta decay mediated by light neutrinos with inverted-ordered masses. While it remains difficult
to compare measurements performed with different isotopes, we find that future searches will fully
test the inverted ordering scenario, as a global, multi-isotope endeavor. They will also test other
possible mechanisms driving the decay, including a large uncharted region of the allowed parameter
space assuming that neutrino masses follow the normal ordering.
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FIG. 1. Comparison of mgg 99.7%-CL discovery and 90%-CL median exclusion sensitivities for different isotopes at stated half-
life sensitivities [30-32], grouped by nuclear many-body frameworks with matrix element ranges from Table I. The horizontal
bands show the variation on (mj3"™ )10 under variation of the neutrino oscillation parameters.
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Discovery probabilities of Majorana neutrinos based on cosmological data
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We discuss the impact of the cosmological measurements on the predictions of the Majorana mass of the
neutrinos, the parameter probed by neutrinoless double-beta decay experiments. Using a minimal set of
assumptions, we quantify the probabilities of discovering neutrinoless double-beta decay and introduce a
new graphical representation that could be of interest for the community

DOI: 10.1103/PhysRevD.103.033008
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sensitivities to mgy for the most unfavorable scenario (black solid
line, m/‘}‘,}“) and the most favorable one (black dashed line, m/’}},a").

The colored areas express the probability for the three possible
outcomes of an experiment: observing a signal even in the worst
case scenario (green, observation), not observing a signal even in
the best case scenario (red, inaccessibility), and when observing a
signal depends on the value of the Majorana phases (white,
exploration).
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discovery probability:
¢ 100% for inverted ordering;

¢ between 20% an 80% for normal ordering, if
Mpp = \/ Amlz2 = 8.6 meV is achieved
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extended gauge models / grand unification; heavy neutrinos; something else?




-] = -

this diagram depicts more accurately which are
the particles of the standard model in each family

this new representation highlights
a significant asymmetry concerning neutrinos




-] = -

SU(2), acts on




-] = -




on the mass scale of heavy neutrinos

Unification of gauge couplings in SO(10) broken to PS * P
0.12

0.08

0.04

10° 10% 10° 10° 1010 1012 104
0 [GeV]

Figure 2: Evolution of the gauge coupling constants in a GUT

model with intermediate scale. Here, M sorm ~ 5 x 101° GeV.
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it the new neutrinos vy are heavy enough, the
ordinary ones take on a small mass, just as we observe

Mpg

Minkowski 1977; Yanagida 1979; Gell-Mann, Ramond, Slansky 1979; Mohapatra Senjanovic 1980




this is called “seesaw”

'L“[_LL_L peE Y

\LL—\.(L

Minkowski 1977; Yanagida 1979; Gell-Mann, Ramond, Slansky 1979; Mohapatra Senjanovic 1980



a plausible scenario for baryogenesis

(Fukugita-Yanagida’'s implementation of Sakharov’s program)

(1) During big-bang, the decay of heavy (right-handed) neutrinos create AL

In , In ]
H ” j
N } - N, N,
k
/
) " \ y QX
H,H’

(a) (b)

Figure 1: Diagrams contributing to the vertex (Fig. 1a) and wave function (Fig. 1b) CP
violation in the heavy singlet neutrino decay.
Covi et al. ‘96
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a plausible scenario for baryogenesis

(Fukugita-Yanagida’'s implementation of Sakharov’s program)

(1) During big-bang, the decay of heavy (right-handed) neutrinos create AL
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Figure 1: Diagrams contributing to the vertex (Fig. 1a) and wave function (Fig. 1b) CP
violation in the heavy singlet neutrino decay.
Covi et al. '96
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discussion: from the minimalistic outlook...

@ rand unified (gauge) models suggest that v masses are heavy, far from

electroweak scale, which controls SM fermion masses instead. This is called the
“great desert” scenario.

@ rdinary neutrino masses would have Majorana nature. This would be a unique
experimental test of physics beyond SM.

m otential to explain baryogenesis and proton decay.

[a ey remark: in this case, the particle spectrum would be just that of the SM.



...t0 more exciting prospects

m e may be close to observing particles beyond the SM, that could be the reason for
anomalies, such as g-2, W mass, b-physics... or “dark matter”. Fun times are back?

[:] ow to proceed? Acquire new facts and harmonize them with caution.

ertainly, neutrino masses remain an important acquired fact, still worthy of
investigation, and a valuable test bed for theories beyond the SM.

B .g.: the direct correlation of the decay rate of 2n — 2p + 2e and absolute neutrino
mass scale holds if L is violated only at ultra-high scale. This might be not the case.



to conciude, a few thoughts on:
how importantis itto prohe B and L2




from 1979 Nobel lectures for the standard model

Salam:

That summer [ 1973, ed] Jogesh Pati and | had predicted proton decay within the
context of what I1s now called GUT.

Glashow:

GUT - perhaps along the lines of the original SU(5) theory of Georgi and me - must
be essentially correct. This implies that the proton, and indeed all nuclear matter, must

be inherently unstable.

Weinberg:

It effects of a tiny non-conservation of baryon or lepton number such as proton
decay or neutrino masses are discovered experimentally, we will then be left with
sauge symmetries as the only true internal symmetries of nature, a conclusion that |
would regard as most satisfactory.
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thanks for your
attention!






Question-1

Sotiris Loucatos

Whatis the v; good for? Can it be dark matter?

This depends on the type of v we are discussing. In the grand unified option

emphasised above, RS are heavy and unstable, since their Yukawa couplings

are similar to those of up quarks (within an order of magnitude) even though
they can leave a significant footprint in the cosmos - baryonic asymmetry.

If one abandons this theoretical framework, it is possible to adjust the

parameters to allow the three vgs to play the role of dark matter (of a few keV)

and also ensure a different form of leptogenesis. This possibility has been
emphasized by Shaposhnikov and co-workers; its drawback is that it is difficult
or impossible to reconcile with principled (grand unified gauge) models.



Question-2
Adrien Blanchet

What should we measure to test the ., hypothesis? In particular what is the
connection with leptonic CP violation that we can measure?

It is not possible to measure the parameters of vy, directly, if the particles are very heavy,
as with the models | have emphasized in most of the talk.

The connection to the low-energy CP violation depends on the model. A proper evaluation
requires the formulation of a complete theory that extends and replaces the standard
model, including at least neutrino masses, but possibly also dark matter particles.

However, based on similar considerations (i.e., baryogenesis) the importance of
measuring hadronic CP violation was widely recognized when meson factories were
proposed; the leptonic CP violation is at least as important, and probably more so.



Question-3

Sara Bolognesi

How gauge coupling unification works with new particles?

The example | showed assumes the existence of new particles, which appear in the
“Pati-Salam” model based on the gauge symmetry

SU4). X SU2); X SU(2)g X P. This possibility is appealing as it gives a reasons
why ordinary neutrinos are light, and SO(10) is undeniably an interesting option.

A much better known example is based on the assumption that near to electroweak
scale, supersymmetry becomes manifest.

These are not the only possibilities; and unfortunately we have little information to
decide if any of these are the correct ones.
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CMB is sensitive to 2=M1+Mo+Mj
L
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onNn modern
terminology

NH—>NO

Normal hierarchy > Normal ordering
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onNn modern
terminology

NO - YES

Normal ordering - Yearningly Expected Spectrum
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Majorana neutrinos work as bridges between
matter & antimatter

~N

2 matter particles can be created !
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Majorana neutrinos
& creation of
electrons (0v2[3)




on nuclear physics aspects

work in progress and needs

¥  great numerical efforts are underway to know precisely the
uncertainties and to produce ab initio estimates ... as far as possible

* comparably large experimental activity on AZ=*1,+%2
processes to validate and improve nuclear models

¥ important/necessary to study different nuclei and with different

techniques to disambiguate various degenerations, from nuclear
physics and possibly from fundamental physics
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The discovery of neutrino masses through the observation of oscillations boosted the importance of neutrinoless double beta
decay (0vfp). In this paper, we review the main features of this process, underlining its key role from both the experimental and
theoretical point of view. In particular, we contextualize the 0vBf in the panorama of lepton number violating processes, also
assessing some possible particle physics mechanisms mediating the process. Since the 0vff existence is correlated with neutrino
masses, we also review the state of the art of the theoretical understanding of neutrino masses. In the final part, the status of current
0vf3 experiments is presented and the prospects for the future hunt for 0v3f are discussed. Also, experimental data coming from
cosmological surveys are considered and their impact on 0vf3f3 expectations is examined.
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TABLE 6: 1o ranges for both Gaussian and Poisson distributions
for two different values of Ny, In the former case, we assumed a

standard deviation equal to \/ N, To compute the error columns,
we halved the total width of the range and divided it by N,

Distribution Neak Range Relative error (%)
5 2.8-7.2 44.7
Gauss
20 15.5-24.5 22.4
. 5 3.1-7.6 45.0
Poisson
20 15.8-24.8 22.5
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WHAT IS "MATTER" MADE OF?

Elementary Components ldentifying End Vigence Of Model Reason For
Of Matter Feature [Theory] Experiment Inadequacy

[Standard Model)
1% .. .- Quarks

i B s e Sy Pr——
g B [Leptonfé Mixing]
Apﬂarance Experiments

.‘h——,

.fﬁﬁajorana’ Mass]




-] = M -

10-plet, S—plet, 1-plet (4,2,1)-plet, (4,1,2)-plet

quarks and leptons
v, included




SM seen as an effective theory

Weinberg 79

0L =

12 .
M ! M’2 ! M”5 M’ > 10 TeV for dim.6

2 e\ 2 M < 101! TeV  for dim.5
(tH)” | tqaq | (fqd")” ..
M" > 5 TeV for dim.9

e the [st |s SM-invariant formulation of neutrino masses
* the 2nd s one of operator that implies proton instability

* the 3 an example of a source of new observable phenomena
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SM seen as an effective theory

Weinberg 79

M < 10 TeV  for dim.5
with M’ > 10'% TeV for dim.6
M" > 5 TeV for dim.9

(CH)*  lqqq = (lqd®)?

0L = M | M2 | W&

* the Ist isthe SM-invariant description of Majorana neutrino masses which
violates B-L

* the 2nd s one of the operators that cause the instability of the proton but
conserves B-L

* the 3 violates lepton number and contributes to 2n—>2p + 2e (0v2f3)

 Atdm./ B-L is broken;at dm.9 also B violation appears
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Do experiments suggest a hierarchy problem?

Francesco Vissani
International Centre for Theoretical Physics, Strada Costiera 11, I-34013 Trieste, Italy
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FIG. 1. The Feynman diagram originating the corrections in Eq.
(1); vg denotes the right-handed neutrino of mass Mg, /;
= (v ,e;) the leptonic and H the Higgs doublets.

OK, but what about the cosmological condtant?



