Neutrino Mass

Ordering 250?

P2IO NuBSM Workshop II IJCLab — April 2022

> Anatael Cabrera CNRS/IN2P3 IJCLab (Orsay) LNCA (Chooz)

BSM

cnrs

solar

universite

status on neutrino oscillation knowledge...

Standard Model (3 families)

[leptons & quarks] & <u>unitary</u> **PMNS**_{3×3}(θ₁₂,θ₂₃,θ₁₃,δ_{CP}) &

no conclusive sign of any extension so far!!

(inconsistencies vs uncertainties)

$\pm \Delta m^2 \& + \delta m^2$

must measure all parameters→characterise & test (i.e. over-constrain) Standard Model

	today			
	best knowledge		NuFit-5.0	
θ12	3.0 %	sk⊕sno	2.3 %	
θ23	5.0 %	NOvA+T2K	2.0 %	
θιз	1.8 %	DYB+DC+RENO	I.5 %	
+δm ²	2.5 %	KamLAND	2.3 %	
Δm²	3.0 %	T2K+NOvA & DYB	1.3 %	
Mass Ordering	unknown	SK et al	NMO ~3 σ	
CP Violation	unknown	T2K+NOvA	≈2σ	
			(now)	

2

(reactor-beam)

soon JUNO \oplus DUNE \oplus HK will lead precision in the field \rightarrow sub-percent precision & CPV!

NOTE: ORCA \oplus PINGU \oplus IceCube complementary (Mass Ordering & Δ m² measurements)

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

the Mass Ordering mystery.

PREPARED FOR SUBMISSION TO JHEP

IFT-UAM/CSIC-112, YITP-SB-2020-21

The fate of hints: updated global analysis of three-flavor neutrino oscillations

Ivan Esteban,^{*a*} M. C. Gonzalez-Garcia,^{*a,b,c*} Michele Maltoni,^{*d*} Thomas Schwetz,^{*e*} Albert Zhou^{*e*}

- ^aDepartament de Fisíca Quàntica i Astrofísica and Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain
- ^bInstitució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain.
- ^cC.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3840, USA
- ^dInstituto de Física Teórica UAM/CSIC, Calle de Nicolás Cabrera 13–15, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
- e Institut für Kernphysik, Karlsruher Institut für Technologie (KIT), D-76021 Karlsruhe, Germany

E-mail: ivan.esteban@fqa.ub.edu,

maria.gonzalez-garcia@stonybrook.edu, michele.maltoni@csic.es, schwetz@kit.edu, albert.zhou@kit.edu

ABSTRACT: Our herein described combined analysis of the latest neutrino oscillation data presented at the Neutrino2020 conference shows that previous hints for the neutrino mass ordering have significantly decreased, and normal ordering (NO) is favored only at the 1.6 σ level. Combined with the χ^2 map provided by Super-Kamiokande for their atmospheric neutrino data analysis the hint for NO is at 2.7 σ . The CP conserving value $\delta_{\rm CP} = 180^{\circ}$ is within 0.6 σ of the global best fit point. Only if we restrict to inverted mass ordering, CP violation is favored at the $\sim 3\sigma$ level. We discuss the origin of these results – which are driven by the new data from the T2K and NOvA long-baseline experiments–, and the relevance of the LBL-reactor oscillation frequency complementarity. The previous 2.2 σ tension in Δm_{21}^2 preferred by KamLAND and solar experiments is also reduced to the 1.1 σ level after the inclusion of the latest Super-Kamiokande solar neutrino results. Finally we present updated allowed ranges for the oscillation parameters and for the leptonic Jarlskog determinant from the global analysis.

KEYWORDS: neutrino oscillations, solar and atmospheric neutrinos

today's world data leads to...

NMO favoured to ~2.7σ (2020)

Super-Kamiokande (most info so far)
I.6σ (NOvA⊕T2K & DC⊕DYB⊕RENO)
some fragility?

what are the leading experiments?

what's going to happen next?

NuFitv5.0: today's world knowledge — what about tomorrow?

today's NMO status...

4

Synergies and prospects for early resolution of the neutrino mass ordering

Anatael Cabrera^{1,2,4}, Yang Han^{1,2}, Michel Obolensky¹, Fabien Cavalier², João Coelho², Diana Navas-Nicolás², <u>Hiroshi Nunokawa^{2,8}</u>, Laurent Simard², Jianming Bian³, Nitish Nayak³, Juan Pedro Ochoa-Ricoux³, Bedřich Roskovec⁷, Pietro Chimenti^{5⊠}, Stefano Dusini^{6⊠}, Mathieu Bongrand^{2,9}, Rebin Karaparambil⁹, Victor Lebrin⁹, Benoit Viaud⁹, Frederic Yermia⁹, Lily Asquith¹⁰, Thiago J. C. Bezerra¹⁰, Jeff Hartnell¹⁰, Pierre Lasorak¹⁰, Jiajie Ling¹¹, Jiajun Liao¹¹ & Hongzhao Yu¹¹

> P2iO institution sabbatical @ P2iO institution

when can we resolve ($\geq 5\sigma$) the neutrino Mass Order? [earliest time scale]

which experiments (i.e. the minimal set) to yield the full resolution?

what physics exploited to yield the full resolution?

MO to probe new physics? (discovery potential)

our studies goal...

scientific reports

Explore content \checkmark About the journal \checkmark Publish with us \checkmark

nature > scientific reports > articles > article

Article Open Access Published: 30 March 2022

Synergies and prospects for early resolution of the neutrino mass ordering

Anatael Cabrera, Yang Han, ... Hongzhao Yu + Show authors

<u>Scientific Reports</u> **12**, Article number: 5393 (2022) Cite this article **198** Accesses Metrics

The measurement of neutrino mass ordering (MO) is a fundamental element for the understanding of leptonic flavour sector of the Standard Model of Particle Physics. Its determination relies on the precise measurement of Δm_{31}^2 and Δm_{32}^2 using either neutrino vacuum oscillations, such as the ones studied by medium baseline reactor experiments, or matter effect modified oscillations such as those manifesting in long-baseline neutrino beams (LBvB) or atmospheric neutrino experiments. Despite existing MO indication today, a fully resolved MO measurement ($\geq 5\sigma$) is most likely to await for the next generation of neutrino experiments: JUNO, whose stand-alone sensitivity is $\sim 3\sigma$, or LBvB experiments (DUNE and Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected to provide precious information. In this work, we study the possible context for the earliest full MO resolution. A firm resolution is possible even before 2028, exploiting mainly vacuum oscillation, upon the combination of JUNO and the current generation of LBvB experiments (NOvA and T2K). This opportunity is possible thanks to a powerful synergy boosting the overall sensitivity where the sub-percent precision of Δm_{32}^2 by LBvB experiments is found to be the leading order term for the MO earliest discovery. We also found that the comparison between matter and vacuum driven oscillation results enables unique discovery potential for physics beyond the Standard Model.

Acknowledgements

/uch of this work was originally developed in the context of our studies linked to the PhD thesis of Y.H. (APC and IJC laboratories) and to the scientific collaboration between H.N. (in sabbatical at the IJC laboratory) and A.C. Y.H. and A.C. are grateful to the CSC fellowship funding of the PhD fellow of Y.H. H.N. acknowledges CAPES and is especially thankful to CNPg and IJC laboratory for their support to his sabbatical, A.C. and L.S. acknowledge the support of the P2IO LabEx (ANR-10-LABX-0038) in the framework "Investissements d'Avenir' (ANR-11-IDEX-0003-01 – Project "NuBSM") managed by the Agence Nationale de la Recherche (ANR), France, where our developments are framed within the neutrino interexperiment synergy working group. AC would like to thank also Stéphane Lavignac for useful comments and suggestions as feedback on the manuscript. The authors are grateful to JUNO's internal reviewers who ensured that the information included in this manuscript about that experiment is consistent with its official position as conveyed in its publications. We would like to specially thank the NuFit5.0 team (Ivan Esteban, Concha Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz and Albert Zhou) for their kindest aid and support to provide dedicated information from their latest NuFit5.0 version. We also would like Concha Gonzalez-Garcia and Fumihiko Suekane for providing precious feedback on a short time scale and internal review of the original manuscript.

open-access — arXiv:2008.11280 updated shortly

most discussion based on...

Université de Paris

Université de Paris L'École Doctorale 560 STEP'UP Laboratoire Astro-Particules et Cosmologie

Dual Calorimetry for High Precision Neutrino Oscillation Measurement at JUNO Experiment

Par Yang HAN

born during our discussions...

the building blocks...

running experiments...

reactor- θ_{13} experiments also help a little...

imminent experiments...

	direct sensitivity	nuisance	combined sensitivity
vacuum oscillation	ultra precise oscillation	θ ₁₃ ?	Δm^2 with precision $\leq I\%$
matter effects	fake CPV (due to Earth)	CPV and θ_{23}	& revolve CPV

NuFitv5.0: maginilise today's world knowledge – CPV, θ_{23} , θ_{13} , ...

the building blocks...

Matter Effects Oscillations (CP experiments→ fake CP-violation)

Appearance Channel $[\theta_{23} \oplus \theta_{13}, \delta_{CP}, MO]$: $v_{\mu} \rightarrow v_{e}$ [v and anti-v] — CPV & fake-CPV Disappearance Channel $[\theta_{23}, \Delta m^{2}_{32}]$: $v_{\mu} \rightarrow v_{\mu}$ "survival probability"

Vacuum Oscillations (no CP-violation)

only 2 ways to measure...

arXiv:2008.11280

NOvA & T2K: direct comparison of oscillation with neutrino & anti-neutrino

NEUTRINO

v_e and \overline{v}_e Data at the Far Detector

Total Observed	82	Range
Total Prediction	85.8	52-110
Wrong-sign	1.0	0.6-1.7
Beam Bkgd.	22.7	
Cosmic Bkgd.	3.1	
Total Bkgd.	26.8	26-28

Total Observed	33	Range	
Total Prediction	33.2	25-45	
Wrong-sign	2.3	1.0-3.2	
Beam Bkgd.	10.2		
Cosmic Bkgd.	1.6		
Total Bkgd.	14.0	13-15	
>4 σ evidence of \bar{v}_e appearance			

Appearance Channel $[\theta_{23} \oplus \theta_{13}, \delta_{CP}, MO]$: $v_{\mu} \rightarrow v_{e}$ [v and anti-v]

Disappearance Channel $[\theta_{23}, \Delta m^2_{32}]: v_{\mu} \rightarrow v_{\mu}$ "survival probability" (not shown)

NOvA/T2K observables...

δ_{CP}, θ_{23} dependent

accelerator sensitivity now

JUNO ultra-precise oscillometry: 2 oscillations & interference terms (hard physics)

the JUNO (hardest) way...

•T2K Appearance (≤2024) — no!

•NOvA Appearance (≤2026) — unlikely!

•JUNO (≥2022) — no!

⇒ T2K + NOvA + JUNO = yes? → but no! (just adding)

→ T2K ⊕ NOvA ⊕ JUNO = yes! (synergies: appearance & disappearance)

still, ~5 σ before 2030...

¹⁷ T2K⊕reactor powerful symmetry: CP-Violation

θ I 3 implications powerful constraint

CPV phase vs θI3 [constrained by reactor]

CPV phase vs θ23

[octant ambiguity]

CPV phase vs (Atmospheric) Mass Ordering

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

	direct sensitivity	nuisance	sensitivity	combined sensitivity
JUNO	ultra precision oscillation	θ13?	~ 3σ	δ(Δm²)≤0.5%
NOvA		60	~3-4 σ (~800km baseline)	δ(Δm²)~1.0%
T2K	fake CPV (due to Earth)	mainly CPV (θ ₂₃ too)	≤2σ (~250km baseline)	δ(Δm²)~1.0%
HyperK				δ(Δm²)~0.5%
DUNE			> 50 ! (~1200km baseline)	δ(Δm²)~0.5%
Atmospherics		mainly θ ₂₃ (CPV too)	∼3-60 (many baselines)	δ(Δm^2) poor

the building blocks...

arXiv:2008.11280

JUNO \bigoplus LB ν B-Disappearance [$\delta(\Delta m^2)$ =0.75%] \bigoplus LB ν B-Appearance

synergy I (JUNO vs NOvA \oplus T2K): high precision disappearance Δm^{2}_{32} measurement

JUNO: unique vacuum oscillations (≥5σ!!!)

Δm² boosting is **blinded to matter-effect**

synergy II (NOvA vs T2K): MO⊕CPV complementary phase space discrimination

arXiv:2008.11280

Mass Ordering: JUNO&NOvA&T2K...

JUNO is world best Δm^2 (~0.1%!!) \rightarrow Accelerator experiments improving $\leq 1.0\%$ NOvA \oplus T2K

all about the Δm^2 synergy...

arXiv:2008.11280 **14** Vaccum Oscillation MO Sensitivity Evolution 12 Mass Ordering Significance $[\sigma]$ JUNO only 10 JUNO $\bigoplus \Delta m^2_{32_{LB\nu B}}(0.75\%)$ 8 6 4 2 $\frac{1}{2}$ Vacuum vs Matter 0 JUNO Timeline (years) discovery: physics BSM? first? MO @ ≥5σ possible (≥90% CL) — follow JUNO [2028]

time evolution... new physics?

23

scientific reports

24

Explore content V About the journal V Publish with us V

nature > scientific reports > articles > article

Article Open Access Published: 30 March 2022

Synergies and prospects for early resolution of the neutrino mass ordering

Anatael Cabrera, Yang Han, ... Hongzhao Yu + Show authors

<u>Scientific Reports</u> **12**, Article number: 5393 (2022) Cite this article **198** Accesses Metrics

Abstract

The measurement of neutrino mass ordering (MO) is a fundamental element for the understanding of leptonic flavour sector of the Standard Model of Particle Physics. Its determination relies on the precise measurement of Δm_{31}^2 and Δm_{32}^2 using either neutrino vacuum oscillations, such as the ones studied by medium baseline reactor experiments, or matter effect modified oscillations such as those manifesting in long-baseline neutrino beams (LBvB) or atmospheric neutrino experiments. Despite existing MO indication today, a fully resolved MO measurement ($\geq 5\sigma$) is most likely to await for the next generation of neutrino experiments: JUNO, whose stand-alone sensitivity is $\sim 3\sigma$, or LBvB experiments (DUNE and Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected to provide precious information. In this work, we study the possible context for the earliest full MO resolution. A firm resolution is possible even before 2028, exploiting mainly vacuum oscillation, upon the combination of JUNO and the current generation of LBvB experiments (NOvA and T2K). This opportunity is possible thanks to a powerful synergy boosting the overall sensitivity where the sub-percent precision of Δm_{32}^2 by LBvB experiments is found to be the leading order term for the MO earliest discovery. We also found that the comparison between matter and vacuum driven oscillation results enables unique discovery potential for physics beyond the Standard Model.

Acknowledgements

/uch of this work was originally developed in the context of our studies linked to the PhD thesis of Y.H. (APC and IJC laboratories) and to the scientific collaboration between H.N. (in sabbatical at the IJC laboratory) and A.C. Y.H. and A.C. are grateful to the CSC fellowship funding of the PhD fellow of Y.H. H.N. acknowledges CAPES and is especially thankful to CNPg and IJC laboratory for their support to his sabbatical, A.C. and L.S. acknowledge the support of the P2IO LabEx (ANR-10-LABX-0038) in the framework "Investissements d'Avenir' (ANR-11-IDEX-0003-01 – Project "NuBSM") managed by the Agence Nationale de la Recherche (ANR), France, where our developments are framed within the neutrino interexperiment synergy working group. AC would like to thank also Stéphane Lavignac for useful comments and suggestions as feedback on the manuscript. The authors are grateful to JUNO's internal reviewers who ensured that the information included in this manuscript about that experiment is consistent with its official position as conveyed in its publications. We would like to specially thank the NuFit5.0 team (Ivan Esteban, Concha Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz and Albert Zhou) for their kindest aid and support to provide dedicated information from their latest NuFit5.0 version. We also would like Concha Gonzalez-Garcia and Fumihiko Suekane for providing precious feedback on a short time scale and internal review of the original manuscript.

atmospheric neutrinos were not covered — extra info \rightarrow even more significance!

correct? missing something?

arXiv:2008.11280

Earliest Resolution to the Neutrino Mass Ordering?

Anatael Cabrera*^{1,2,4}, Yang Han^{†1,2}, Michel Obolensky¹, Fabien Cavalier², João Coelho², Diana Navas-Nicolás², Hiroshi Nunokawa^{‡2,7}, Laurent Simard², Jianming Bian³, Nitish Nayak³, Juan Pedro Ochoa-Ricoux³, Bedřich Roskovec³, Pietro Chimenti⁵, Stefano Dusini^{6a}, Marco Grassi^{6b}, Mathieu Bongrand^{8,2}, Rebin Karaparambil⁸, Victor Lebrin⁸, Benoit Viaud⁸, Frederic Yermia⁸, Lily Asquith⁹, Thiago J. C. Bezerra⁹, Jeff Hartnell⁹, Pierre Lasorak⁹, Jiajie Ling¹⁰, Jiajun Liao¹⁰, and Hongzhao Yu¹⁰

¹APC, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité University, 75205 Paris Cedex 13, France ²IJCLab,, Université Paris-Saclay, CNRS/IN2P3, 91405 Orsay, France ³Department of Physics and Astronomy, University of California at Irvine, Irvine, California 92697, USA ⁴LNCA Underground Laboratory, CNRS/IN2P3 - CEA, Chooz, France ⁵Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina – PR, Brazil ^{6a}INFN, Sezione di Padova, via Marzolo 8, I-35131 Padova, Italy ^{6b}Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I-35131 Padova, Italy ⁷Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, 22451-900, Brazil ⁸SUBATECH, CNRS/IN2P3, Université de Nantes, IMT-Atlantique, 44307 Nantes, France ⁹Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom ¹⁰Sun Yat-sen University, NO. 135 Xingang Xi Road, Guangzhou, China, 510275

August 27, 2020 – v3.5

We hereby illustrate and numerically demonstrate via a simplified proof of concept calculation tuned to the latest average neutrino global data that the combined sensitivity of JUNO with NOvA and T2K experiments has the potential to be the first fully resolved ($>5\sigma$) measurement of neutrino Mass Ordering (MO) around 2028; tightly linked to the JUNO schedule. Our predictions account for the key ambiguities and the most relevant $\pm 1\sigma$ data fluctuations. In the absence of any concrete MO theoretical prediction and given its intrinsic binary outcome, we highlight the benefits of having such a resolved measurement in the light of the remarkable MO resolution ability of the next generation of long baseline neutrino beams experiments. We motivate the opportunity of exploiting the MO experimental framework to scrutinise the standard oscillation model, thus, opening for unique discovery potential, should unexpected discrepancies manifest. Phenomenologically, the deepest insight relies on the articulation of MO resolved measurements via at least the two possible methodologies matter effects and purely vacuum oscillations. Thus, we argue that the JUNO vacuum MO measurement may feasibly yield full resolution in combination to the next generation of long baseline neutrino beams experiments.

The discovery of *neutrino* (ν) oscillations phenomenon non-trivial mixture of the known neutrino flavour eigenhave completed a remarkable scientific endeavour last- states (ν_e, ν_μ, ν_τ) linked to the three (e, μ, τ) respective ing several decades that has changed to ever our under-standing of the phenomenology of the leptonic sector idence beyond three families exists so far, the mixing (201) A is characterised by the 3×3 so called *Pontecorvo-Maki*few modifications were accommodated to account for the Nakagawa-Sakata (PMNS) [3, 4] matrix, assumed uninew phenomenon [1]. This means the manifestation of tary, thus parametrised by three independent mixing anmassive neutrinos and leptonic mixing along with an em- gles $(\theta_{12}, \theta_{23}, \theta_{13})$ and one CP phase (δ_{CP}) . The neutrino bedded mechanism for the intrinsic difference between ν mass spectra are indirectly known via the two measured and $\bar{\nu}$ due to the violation of charge conjugation parity mass squared differences indicated as $\delta m_{21}^2 (\equiv m_2^2 - m_1^2)$ symmetry, or CP-violation (CPV); e.g. review [2].

eigenstates (ν_1 , ν_2 , ν_3) spectrum is non-zero and non-rectly accessible via neutrino oscillations and remains degenerate, so at least two neutrinos are massive. Each unknown, despite major active research [5]. mass eigenstate (ν_i ; with i=1,2,3) can be regarded as a

*Contact: anatael@in2p3.fr Contact: vang.han@apc.in2p3.fr Contact: nunokawa@puc-rio.br

and $\Delta m_{32}^2 (\equiv m_3^2 - m_2^2)$, respectively, related to the ν_2/ν_1 Neutrino oscillations imply that the neutrino mass and ν_3/ν_2 pairs. The neutrino absolute mass is not di-

As of today, the field is well established both exper-

Physics potentials with a combined sensitivity of T2K-II, $NO\nu A$

extension and JUNO

S. Cao,^{1,*} A. Nath,^{2,†} T. V. Ngoc,^{3,4,‡} Ng. K. Francis,^{2,§} N. T. Hong Van,^{5,3,¶} and P. T. Quyen^{3,4,**}

¹High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan ²Department of Physics, Tezpur University, Assam, India ³Institute For Interdisciplinary Research in Science and Education (IFIRSE), Quy Nhon, Vietnam ⁴Graduate University of Science and Technology,

Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam ⁵Institute of Physics, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam

Abstract

Leptonic CP violation search, neutrino mass hierarchy determination, and precision measurement of oscillation parameters for an unitary test of the neutrino mixing matrix are among the major targets of the ongoing and future neutrino oscillation experiments. The work explores the physics reach for these targets by around 2027, when the 3rd generation of the neutrino experiments starts operation, with a combined sensitivity of three experiments T2K-II, $NO\nu A$ extension, and JUNO. It is shown that a joint analysis of these three experiments can conclusively determine the neutrino mass hierarchy. Also, it provides 5σ C.L. more or less to exclude CP conserving values if true $\delta_{\rm CP} \sim \pm \frac{\pi}{2}$ and more than 50% fractional region of true $\delta_{\rm CP}$ values can be explored with a significance of at least 3σ C.L. Besides, the joint analysis can provide unprecedented precision measurements of the atmospheric neutrino oscillation parameters and a great offer to solve the θ_{23} octant degeneracy in case of non-maximal mixing.

* cvson@post.kek.jp [†] ankur04@tezu.ernet.in [‡] tranngocapc06@ifirse.icise.vn

- § francis@tezu.ernet.in

2020

Oct

4

[hep-ph]

Xiv:2009.08585v2

¶ nhvan@iop.vast.ac.vn ** phantoquyen97@gmail.com

confirmation (end of September 2020) [poster @ Nu2020]

our results (end of August 2020)

25

Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering

S. Aiello^a A. Albert^{ba,b} M. Alshamsi^c S. Alves Garre^d Z. Aly^e A. Ambrosone^{f,g} F. Ameli^h M. Andreⁱ G. Androulakis^{i,†} M. Anghinolfi^k M. Anguita^l M. Ardid^m S. Ardid^m J. Aublin^c C. Bagatelas^j B. Baret^c S. Basegmez du Preeⁿ M. Bendahman^{c,o} F. Benfenati^{p,q} E. Berbeeⁿ A. M. van den Berg^r V. Bertin^e S. Biagi^s M. Boettcher^t M. Bou Cabo^u J. Boumaaza^o M. Bouta^v M. Bouwhuisⁿ C. Bozza^w H.Brânzas^x R. Bruijn^{n,y} J. Brunner^e R. Bruno^a E. Buis^z R. Buompane^{f,aa} J. Busto^e B. Caiffi^k D. Calvo^d S. Campion^{ab,h} A. Capone^{ab,h} V. Carretero^d P. Castaldi^{p,ac} S. Celli^{ab,h} M. Chabab^{ad} N. Chau^{c,*} A. Chen^{ae} S. Cherubini^{s,af} V. Chiarella^{ag} T. Chiarusi^p M. Circella^{ah} R. Cocimano^s J. A. B. Coelho^c A. Coleiro^c M. Colomer-Molla^{c,d} R. Coniglione^s P. Coyle^e A. Creusot^c A. Cruz^{ai} G. Cuttone^s R. Dallier^{aj} B. De Martino^e I. Di Palma^{ab,h} A. F. Díaz¹ D. Diego-Tortosa^m C. Distefano^s A. Domi^{n,y} C. Donzaud^c D. Dornic^e M. Dörr^{ak} D. Drouhin^{ba,b} T. Eberl^{al} A. Eddyamoui^o T. van Eedenⁿ D. van Eijkⁿ I. El Bojaddaini^v A. Enzenhöfer^e V. Espinosa^m P. Fermani^{ab,h} G. Ferrara^{s,af} M. D. Filipović^{am} F. Filippini^{p,q} L. A. Fusco^e T. Gal^{al} J. García Méndez^m A. Garcia Soto^d F. Garufi^{f,g} Y. Gatelet^c C. Gatiusⁿ N. Geißelbrecht^{al} L. Gialanella^{f,aa} E. Giorgio^s S. R. Gozzini^d R. Graciaⁿ K. Graf^{al} G. Grella^{an} D. Guderian^{bb} C. Guidi^{k,ao} B. Guillon^{ap} M. Gutiérrez^{aq} J. Haefner^{al} S. Hallmann^{al} H. Hamdaoui^o H. van Haren^{ar} A. Heijboerⁿ A. Hekalo^{ak} L. Hennig^{al} J. J. Hernández-Rey^d J. Hofestädt^{al} F. Huang^e W. Idrissi Ibnsalih^{f,aa} G. Illuminati^{p,c} C. W. James^{ai} D. Janezashvili^{as} M. de Jong^{n,at} P. de Jong^{n,y} B. J. Jungⁿ P. Kalaczyński^{au} O. Kalekin^{al} U. F. Katz^{al} N.R. Khan Chowdhury^d G. Kistauri^{as} F. van der Knaap^z P. Kooijman^{y,bc} A. Kouchner^{c,av} V. Kulikovskiy^k M. Labalme^{ap} R. Lahmann^{al} M. Lamoureux^{c,‡} G. Larosa^s C. Lastoria^e A. Lazo^d R. Le Breton^c S. Le Stum^e G. Lehaut^{ap} O. Leonardi^s

F. Leone^{s,af} E. Leonora^a N. Lessing^{al} G. Levi^{p,q} M. Lincetto^e M. Lindsey Clark^c T. Lipreau^{aj} C. LLorens Alvarez^m F. Longhitano^a D. Lopez-Coto^{aq} A. Lygda^j L. Maderer^c J. Majumdarⁿ J. Mańczak^d A. Margiotta^{p,q} A. Marinelli^f C. Markou^j L. Martin^{aj} J. A. Martínez-Mora^m A. Martini^{ag} F. Marzaioli^{f,aa} S. Mastroianni^f K. W. Melisⁿ G. Miele^{f,g} P. Migliozzi^f E. Migneco^s P. Mijakowski^{au} L. S. Miranda^{aw} C. M. Mollo^f M. Moser^{al} A. Moussa^v R. Mullerⁿ M. Musumeci^s L. Nautaⁿ S. Navas^{aq} C. A. Nicolau^h B. Nkosi^{ae} B. Ó Fearraigh^{n,y} M. O'Sullivan^{ai} M. Organokov^b A. Orlando^s J. Palacios González^d G. Papalashvili^{as} R. Papaleo^s A. M. Păun^x G. E. Păvălaş^x C. Pellegrino^{q,bd} M. Perrin-Terrin^e V. Pestelⁿ P. Piattelli^s C. Pieterse^d O. Pisanti^{f,g} C. Poirè^m V. Popa^x T. Pradier^b I. Probst^{al} S. Pulvirenti^s G. Quéméner^{ap} N. Randazzo^a S. Razzaque^{aw} D. Real^d S. Reck^{al} G. Riccobene^s A. Romanov^{k,ao} A. Rovelli^s F. Salesa Greus^d D. F. E. Samtleben^{n,at} A. Sánchez Losa^{ah,d} M. Sanguineti^{k,ao} D. Santonocito^s P. Sapienza^s J. Schnabel^{al} M. F. Schneider^{al} J. Schumann^{al} H. M. Schutte^t J. Senecaⁿ I. Sgura^{ah} R. Shanidze^{as} A. Sharma^{ax} A. Sinopoulou^j B. Spisso^{an,f} M. Spurio^{p,q} D. Stavropoulos^j S. M. Stellacci^{an,f} M. Taiuti^{k,ao} Y. Tayalati^o H. Thiersen^t S. Tingay^{ai} S. Tsagkli^j V. Tsourapis^j E. Tzamariudaki^j D. Tzanetatos^j V. Van Elewyck^{c,av,*} G. Vasileiadis^{ay} F. Versari^{p,q} D. Vivolo^{f,aa} G. de Wasseige^c J. Wilms^{az} R. Wojaczyński^{au} E. de Wolf^{n,y} T. Yousfi^v S. Zavatarelli^k A. Zegarelli^{ab,h} D. Zito^s J. D. Zornoza^d J. Zúñiga^d N. Zywucka^t (KM3NeT Collaboration)

S. Ahmad¹⁰ J. P. A. M. de André^{4,*} E. Baussan⁴ C. Bordereau^{13,9} <u>A. Cabrera²</u> C. Cerna¹³ G. Donchenko⁸ E. A. Doroshkevich⁵ M. Dracos⁴ F. Druillole¹³ C. Jollet¹³ L. N. Kalousis⁴ P. Kampmann¹ K. Kouzakov⁸ A. Lokhov^{5,8} B. K. Lubsandorzhiev⁵ S. B. Lubsandorzhiev⁵ A. Meregaglia¹³ L. Miramonti³ F. Perrot¹³ L. F. Piñeres Rico⁴ A. Popov⁸ R. Rasheed¹³ M. Settimo¹¹ K. Stankevich⁸ H. Steiger^{7,12} M. R. Stock¹² A. Studenikin⁸ A. Triossi⁴ W. Trzaska¹⁴ M. Vialkov⁸ B. Wonsak⁶ J. Wurtz⁴ F. Yermia¹¹ (JUNO Collaboration members)

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

26

arXiv:2108.06293v1 [hep-ex] 13 Aug 2021

main nuisance: the θ_{23} octant...

θ₂₃ octant ambiguity withholds much (up to ~2x in NMO) of the atmospheric potential...
 •if normal-MO sensitivity (best): combined [5,8]σ
 •if inverted-MO sensitivity (worse): combined [5,6]σ

ORCA@JUNO sensitivity...

combination goes beyond the simple sum of X²... boosting term but less strong

ORCA@JUNO: poorer boost

ORCA's intrinsic precision on Δm^2 is limited — instead JUNO is world best!

Mass Ordering: benefits from all...

many experiments with sensitivity...

now running (alphabetical)...

- •NOvA direct sensitivity
- •**Reactor-** θ **I3** indirectly (via Δ m²)
- **SuperK** direct sensitivity
- •**T2K** indirect sensitivity (via $\Delta m^2 \& CPV$)
- ⇒ see impact and details in **NuFit5.0**, Bari, Valencia, Madrid **global analyses**

forthcoming (alphabetical)...

- **DUNE** direct sensitivity
- HyperK (atmospheric) direct sensitivity
- •JUNO direct sensitivity
- •ORCA direct sensitivity
- **PINGU** direct sensitivity
- •**T2HK** indirect sensitivity (via $\Delta m^2 \& CPV$)

very exciting field — including CPV measurement

Neutrino Mass Ordering resolution...

•fully resolved (≥5σ) by 2026-2028: JUNO⊕NOvA⊕T2K — plus atmospheric!

•role of **atmospheric very important** — full exposure needed for statistical power.

• first measurement a mixture of vacuum(JUNO)
matter(all others)

•ultimate vacuum(JUNO) vs matter(DUNE): discovery?

Дякую... merci... ありがとう... danke... 고맙습니다... obrigado... obrigado... grazie... grazie... 谢谢... hvala... gracias...

thanks...

31