Cryogenic active shielding for 0vββ decay bolometric experiments

Giovanni Benato

P2IO BSM-v April 11, 2022

Planning $0\nu\beta\beta$ decay searches beyond the Inverted Ordering

Planning $0\nu\beta\beta$ decay searches beyond the Inverted Ordering

What are the required isotope mass and background level?

To get here we need:

- ≥1 ton of isotope
- BI ~10⁻⁶ cts/keV/kg/yr

- Purchase of raw element(s)
 - \rightarrow Easy for most element containing a $0\nu\beta\beta$ candidate isotope
- Isotopic enrichment
 - \rightarrow Large-scale production of "stable" isotopes only performed in Russia so far
 - \rightarrow Alternative productions in Europe or US are possible
 - \rightarrow Electricity drives the cost of centrifuge-based enrichment
 - \rightarrow The entire $0\nu\beta\beta$ community is facing this challenge together
- Crystal growth
 - \rightarrow Growth technique and capability heavily depends on crystal type
 - \rightarrow In general, multiple producers available in different countries

Reducing the background

BINGO: Bi-Isotope $0\nu\beta\beta$ Next Generation Observatory

Main idea: the crystals should be surrounded only by active elements \rightarrow Actively veto surface a and β radioactivity of crystal holders

 \rightarrow Actively veto $\gamma {}^{\prime} s$ from cryostat

BINGO: Bi-Isotope $0\nu\beta\beta$ Next Generation Observatory

BINGO: Bi-Isotope $0\nu\beta\beta$ Next Generation Observatory

Mini-BINGO

- Demonstrator of BINGO technology to be operated at Modane Underground Lab (LSM)
- Two towers of 12 crystals $\rightarrow \text{Li}_2\text{MoO}_4$
 - $\rightarrow TeO_{2}$
- Innovative light detectors with Neganov-Luke amplification
- Cryogenic active shield

Planning the internal veto

Requirements for the ideal internal veto:

- Absorb as many external γ's as possible

 → High density, large thickness
 → 4π coverage
- Do not induce any background or dead time
 → High radio-purity
- Flag as many events as possible, especially mildly Compton-scattered γ's
 - \rightarrow Low threshold of ~50 keV
 - \rightarrow High light yield and light collection efficiency

Which material for the veto?

- Bismuth Germanate: Bi₄Ge₃O₁₂
 - \rightarrow Density ~7.13 g/cm^{3⁻}
 - \rightarrow Excellent light yield of 8-10·10³ photons/MeV (nominal, at room temperature)
 - \rightarrow Available in large sizes
 - \rightarrow Several producers
 - \rightarrow Radiopurity to be verified, especially regarding ²⁰⁷Bi
- Zinc Tungstate: ZnWO₄
 - \rightarrow Density ~7.62 g/cm³
 - \rightarrow Excellent light yield of 9.5·10^ photons/MeV
 - \rightarrow Excellent radiopurity: <0.17 $\mu Bq/kg$ in ^{232}Th
 - $\rightarrow \alpha$ contamination to be measured
 - \rightarrow Large sizes to be demonstrated
 - \rightarrow Only Russian producers

²⁰⁷Pb STABLE

BGO characterization

- Ø 30 mm, h 60 mm
- Reflecting foil around the crystal
- Fixed with Teflon holder on copper frame
- Light detector: SiO-coated Ge wafer instrumented as bolometer
- Light detector readout with Neutron-Transmutation-Doped Ge thermistor

BGO characterization: light yield

- Long cool-down time required
 - \rightarrow Not a show-stopper, as BGO is not directly operated as bolometer
- Light yield: 28 keV/MeV ~ 10.8·10³ photons/MeV
- Rise time: 1.8 ms
- Decay time: 8.6 ms

BGO characterization: radioactive contamination

G. Benato, P210 BSM-v, 12-2-2021

BGO characterization: trigger efficiency

- Inject fake pulses with different amplitudes
- Trigger efficiency doesn't reach 100% due to pile-up
- More precise characterization to be performed underground

ZnWO characterization

- Tested with one LiO-coated and one NbO-coated light detectors
- ²³⁸U contamination ~ 0.4 mBq/kg

Light detector	Rise time [ms]	Decay time [ms]	LY [keV/MeV]
SiO	1.3	5.3	13.6
NbO	2.1	9.6	14.2

Next steps for Mini-BINGO

- Optimization of cryogenic veto geometry via MC simulations
 → ongoing
- Evaluation of maximum tolerable $^{238}\text{U},\,^{232}\text{Th}$ and ^{207}Bi contamination \rightarrow ongoing
- Optimization of light collection through simulation of optical photons \rightarrow ongoing
- Finalization of passive external shielding design
 → ongoing
- Cryostat setup at LSM
 - \rightarrow expected to start in Winter 2022-2023

