CUPID and its **demonstrators**

Background goals for bolometric experiments

CUORE: the largest bolometric experiment

- CUORE: the Cryogenic Underground
 Observatory for Rare Events
- First ton scale array of cryogenic calorimeters: 988 TeO₂ crystals (0.75 kg each)
- CUORE cryogenic facility is an unprecendented techological challenge, which is now taking data in steady and reliable conditions (after 1 yr of optimization)

CUORE background

CUORE Background Index:

• $b = 1.49 \times 10^{-2} \text{ cnts/keV/kg/yr}$

90% Degraded-α background:

• Decays with Q-values in 4-8 MeV range that lose energy in nearby passive materials

10% β/γ background:

- Mostly 2615 keV γ's that scatter before hitting a bolometer
- Also nearby β 's from U/Th chains
- \lesssim 1% Muons

CUORE Preliminary (300.7 kg yr)

CUORE upgrade

CUORE: first ton-scale DBD experiment at 10 mK No particle ID

4/11/2022

BSM-nu workshop

CUPID

CUORE: first ton-scale DBD experiment at 10 mK No particle ID

4/11/2022

4/11/2022

BSM-nu workshop

CUPID-0 demonstrator (82Se)

- The first array of scintillating bolometers for the investigation of ⁸²Se 0v2β in LNGS
- 95% enriched Zn⁸²Se bolometers (5.17 kg of ⁸²Se, $Q_{\beta\beta}$ =2998 keV)

4/11/2022

CUPID-0 results

- Demonstration of advantages of dual-readout technique
- High scientific potential (e.g. best limit on ⁸²Se 0v2β half- life, most precise measurement of ⁸²Se 2v2β, CPT violation search, SSD vs HSD)

 $T_{1/2}^{0v} > 4.7 \times 10^{24} yr$ (90% C. I. limit)

CUPID-Mo

- Li₂¹⁰⁰MoO₄ scintillating crystals high energy resolu radiopurity, array of 20 modules
- Total of 2.26 kg of 100 Mo, $Q_{BB} = 3034$ keV

12

CUPID-Mo results

FWHM @ $Q_{\beta\beta}$ =7.38 ± 0.35 keV

13

- Best limit on $^{100}Mo~0\nu2\beta$ half- life, most precise measurement of $^{100}Mo~2\nu2\beta$

 $T_{1/2}^{0v} > 1.8 \times 10^{24} yr$ (90% C. I. limit)

CUPID baseline design

- 1596 $Li_2^{100}MoO_4$ scintillating bolometers
- 95% enrichment: 240 kg of ¹⁰⁰Mo
- Target background index: ~10⁻⁴ cnts/keV/kg/yr
- Target sensitivity to effective Majorana neutrino mass ~ 10 meV

 α background effectively eliminated by PID

α background effectively eliminated by PID
 High preformance of light detectors is required to eliminate the reflecting foil

α background effectively eliminated by PID
 High preformance of light detectors is required
 to eliminate the reflecting foil

α background effectively eliminated by PID

 β/γ backgrounds reduced to < 5×10⁻⁵ cnts/(keV·kg·yr):

- Achievable with existing material selection, parts cleaning and handling, cryostat shielding
- Delayed coincidence cuts remove backgrounds from U/Th decay chains

α background effectively eliminated by PID

$2\nu\beta\beta$ decay pileup reduced to < 5×10^{-5} cnts/(keV·kg·yr):

- Requires high light detector timing resolution
- Higher sampling rate, wider bandwidth electronics, lower noise, new NTDs, machine learning techniques
- Requires hardware improvements of factor of ~2 on light detectors

α background effectively eliminated by PID

Muons reduced by an order of magnitude:

• Muon veto system with 99% geometric efficiency

CUPID detectors prototypes

- Tests with few modules are concluded
- Two structures (baseline and alternative) were designed
- Reflecting foil is eliminated, LD performance is within requirements

CUPID single tower

- The preparation of 28 modules assembly is ongoing
- The measurement will take place at LNGS underground lab
- Main objectives:
 - Validation of thermal and vibrational characteristics
 - Performance validation
 - Comparison of several types of sensors coupling

CUPID: sensitivity

- CUPID: Exactly what we could start building today:10-4 cts/keV/kg/yr
- CUPID-reach: improvements before construction: 2×10-5 cts/keV/kg/yr
- CUPID-1T: 1 ton ¹⁰⁰Mo in new cryostat: 5×10⁻⁶ cts/keV/kg/yr

CUPID demonstrators for CUPID-REACH

• Two projects are ongoing, both strongly tied with CUPID

Development of surface sensitive bolometers for rejection of both α and β backgrounds

Implementation of **cryogenic veto**, **Neganov-Luke** light detectors and **reduction of passive elements** around detectors

Isotope choice for demonstrators

¹⁰⁰Mo - first choise: Q = 3034 keV > 2615 keV A.I.: 9.7%

¹³⁰Te - kept as an option: Q = 2527 keV < 2615 keV A.I.: 34%

CROSS technology: surface sensitivity

• Bolometers coated with metal films to identify near-surface events (No light detector is needed and advanced particle ID)

CROSS prototypes

Appl_Phys. Lett 118, 184105 (2021)

Li₂MoO₄ BSM-nu workshop

CROSS demonstrator

- CROSS-CUPID entanglement: joint tests are in progress, several improvements applied for CUPID
- Scaling from small (20x20x10 mm, 12 g) to large (45x45x45 mm, 280 g) crystals: not straight forward, measurements are ongoing
- Demonstrator with 42 Li₂¹⁰⁰MoO₄ cubic (45³ mm) crystals with CROSS technology + 20 CUPID-Mo crystals:
 6.6 kg of ¹⁰⁰Mo
- With BI=10⁻³ cnts/keV/kg/yr and 2 yr livetime: T_{1/2} limit ~ 2×10²⁵ yr, m_{ββ}~(86-149) meV

BINGO experiment: gamma bkg reduction

- Surface events discrimination: detectors will "see" only active elements
- Internal active veto: ZnWO₄(or BGO) scintillators, bolometric light read-out
- Light detectors with Neganov-Luke technology to reach 10 eV rms baseline
- Both Li_2MoO_4 and TeO_2 compounds

Technology for bkg index in ROI: ~10⁻⁵ cnts/keV/kg/yr

BINGO prototypes: assembly

- First prototypes: 20x20x20 mm Li₂MoO₄ crystals
- Excellent performance and energy resolution
- The best energy resolution ever obtained on the ⁷Lin capture line

• Full scale prototypes to be tested underground soon

BINGO prototypes: veto

 Veto prototype: Very low energy threshold of the light detector is required

More details on cryogenic veto in the next talk

BSM-nu workshop

BINGO prototypes: Neganov-Luke detectors

- New electrodes and shape design
- Can be implemented in CUPID for pile-up reduction

BINGO demonstrator

- MINI-BINGO will be installed in Modane
 Underground Laboratory
- 2x12 crystal towers
- Crystals will see nothing else that is not active

Scale high enough to demonstrate $b \le 10^{-4} \text{ cnts/keV/kg/yr}$ in 1 yr data taking

33

CUPID

CUPID is an outstanding next-generation experiment:

- technologically ready: Li₂¹⁰⁰MoO₄ detectors are well-studied and ready for mass production;
- data driven: precise background model of the cryostat; significant experience with data analysis of large arrays of bolometers;
- based on existing infrastructure, which is already optimized and well-tested in CUORE;
- cost effective

CUPID aims to cover completely inverted and part of normal hiearchy regions

Background sources and isotope choice

α

 $\beta^{-} 5.49$

 Q_{β} =5.0 MeV

 $164 \mu s$ α 7.83

210Pb

BINGO prototypes

• Tests with 45x45x45 mm crystals

β surface radioactivity

These processes become challenging at the surface \rightarrow it may happen that α escapes detection and β is (partially) absorbed

Scintillating bolometer technology

- Source is embedded in a crystal → high detection efficiency (~90%)
- 0.1-0.5 kg typical crystal mass, scalability to a large-mass array
- Detectors are operated at ~10 mK, the deposited energy is measured as a temperature increase in a crystal
- Scintillator → Particle discrimination using light: >99.9 % a background rejection
- High energy resolution:
 ~5 keV FWHM (~0.2%) at the Q_{ββ}

