Background studies for CUPID-Mo and CUPID 0vββ experiments

LÉONARD IMBERT P2IO MEETING 11/04/2022

LÉONARD IMBERT

Neutrinoless double beta decay

2νββ

- \circ 2n -> 2p + 2e⁻ + 2 $\overline{\nu_e}$
- Standard Model process
- Possible for 35 nuclides
 - Even-Even nucleus
 - Observed for 9 isotopes

0νββ

- Hypothetical decay
- ° 2n -> 2p + 2e⁻
- Lepton number violation ΔL = 2
- Majorana neutrino $u = \bar{\nu}$
- Majorana neutrino is needed in leptogenesis to explain the matter/antimatter asymmetry

n

p

Searching for $0\nu 2\beta$

The shape of the two-electron sum-energy spectrum enables to distinguish between the 0ν (new physics) and the 2ν decay modes

- Requires :
 - $\circ\,$ Low background in the ROI (around the $Q_{\beta\beta}$)
 - Good energy resolution

Bolometric technique

Source = Detector

- Crystals cool down to ~ 10-20 mK
- Detector = source
 - High detection efficiency
- Good energy resolution

- Scintillating bolometers
 - $\circ\,$ Discriminations between β/γ and α particles
 - Heat and Light signals

CUPID-Mo

Demonstrator for the next generation ton scale experiment CUPID

Installed at Laboratoire Souterrain de Modane (LSM)

Installed in EDELWEISS cryostat

¹⁰⁰Mo $Q_{\beta\beta}$ = 3034 keV

- 20 Li₂¹⁰⁰MoO₄ scintillating bolometers
- 0.2 kg Li₂¹⁰⁰MoO₄ cylindrical crystals
- 100 Mo enrichment ~ 97 %
- Ge wafers as Light Detectors (LD)
- NTD Ge thermistors
- Copper holders, PTFE supports, Reflecting foils
- Materials radioactivity have been measured by HPGe or ICPMS

CUPID-Mo Data production

Exposure : 2.71 kg.year acquired between March 2019 and June 2020

Light Detector Cut

Goal : Apply a unique cut on all the data to remove α particles

- 1. Extraction of the 2 Light Detectors signals
- 2. Normalize each signal in the Light Detector by :
 - a) The Energy (light is proportional to heat)
 - b) The Light Detector (each one has its own performances)
 - c) The Dataset (acquisition conditions can affect performances)

S2

S1

Delayed coincidences

Thorium chain :

Goal : remove β decays of ²⁰⁸Tl from the crystals

LÉONARD IMBERT

Multiplicity

 Number of events above our energy threshold^[1] within a +/- 10 ms time window

° Μ_{1,β/γ}

- Events in one detector identified as β/γ
- Ονββ signal like

- Coincidences between two crystals
- Constrains levels of external contaminations

 $^{\circ}M_{1,lpha}$

- \circ M₁ events & E > 3 MeV
- Constrain levels of contaminations for crystals and reflectors
- Permits differentiation between bulk and surface events for crystals

Limit on $T_{1/2}^{0\nu\beta\beta}$ of ¹⁰⁰Mo

- $\,\circ\,$ Blinding performed by masking events in an energy range of +/- 50 keV around $Q_{\beta\beta}$
- Exposure : 2.71 kg×year of data (1.47 kg×year for ¹⁰⁰Mo)
- After application of all cuts : 0 events in the ROI
- Bayesian counting analysis in ROI and sidebands leads to :

T_{1/2} > 1.8 × 10²⁴ y (90% Cl)

m_{ββ} < (280 - 490) meV

arXiv:2202.08716 Submitted to EPJC

Background model

Goal : Describe the experimental data by a linear combination of the MC spectra

• MC simulations used as input for a global fit of the data

• Simultaneous fit of $M_{1,\beta/\gamma}$, M_{2sum} , $M_{1,\alpha}$ spectra

1K PE External PE Internal Pb **300K Electronics** He Reservoir

CUPID-Mo detectors

Geant4 Rendering of the Edelweiss set up with the CUPID-Mo detectors as implemented in the simulations

Detector response model

Detector effects convolved into Monte-Carlo spectra

- Light Detector signal
 - For each deposited energy in the crystal we generate randomly a scintillation light
 - This scintillation light is generated according to the light distribution in the data

Final reference fit

- Fit performed with a Bayesian analysis using Just Another Gibbs Sampler (JAGS)
- Parameters of the model tell us the radioactive contamination of the various components
- A robust background model allows for several further physics studies

Priors : Final Reference Fit

Excited state $2\beta 2\nu 0_1^+$:

• $T_{1/2} = (6.7 + -0.5) 10^{20}$ years Barabash, A. S. AIP Conference Proceedings. Vol. 2165. No. 1. AIP Publishing LLC, 2019.

<u>Pile-up :</u>

 $^\circ~$ Spectrum is generated by random selection of 2 events in the 2 β 2v spectrum

 $\Gamma_{pileup} \propto \Gamma_{single}^2 \times \Delta t_{eff} \longleftarrow$ time resolution of the detector

• In calibration data :
$$\Delta t_{eff} < 7ms$$
 (90% C.I.)

Accidentals :

 $\,\circ\,$ Spectrum is generated by random selection of 2 events in the $M_{1,\beta/\gamma}$ spectrum

• $N_{accidentals} = 620 \pm 25$ events

Activities of Springs :

• ⁴⁰K : 3600 +/- 400 mBq/kg

²²⁶Ra : 11 +/- 3 mBq/kg

²²⁸Th: 21 +/- 5 mBq/kg

Results : $M_{1,\beta/\gamma}$

Background components : $M_{1,\alpha}$

Crystal bulk activities

Crystal surface activities

Surface component :

 $^{\circ}$ Exponential density profile $e^{-x/\lambda}$

 $\circ \lambda = 10 \text{ nm}$

Background Index

Background index in 3034 +/- 15 keV :

 $3.0^{+0.7}_{-0.6} \times 10^{-3}$ counts / keV / kg / year

Backgrounds of CUPID-Mo / CUPID

CUPID-Mo

Laboratoire souterrain de Modane (LSM)

Edelweiss cryostat

20 Li₂¹⁰⁰MoO₄ crystals

Closed structure

CUPID - Next bolometric ton scale experiment for $0\nu\beta\beta$

Laboratori Nazionali del Gran Sasso (LNGS)

CUORE cryostat

 \sim 1500 Li₂¹⁰⁰MoO₄ crystals

Open structure

Background Index Goal = 10⁻⁴ ckky

Decay process of ¹⁰⁰Mo $2\nu\beta\beta$

- SSD Intermediate state :
- Ground state of ¹⁰⁰Tc
- HSD Intermediate state :
- Include higher states of ¹⁰⁰Tc

0

Models can be distinguished by the shape of ¹⁰⁰Mo 2νββ

The two models were parameterized according to Jenni Kotila

- The **HSD model is clearly disfavoured** from the fit
- Experimentally we favoured the SSD model
- This is in agreement with observations of other experiments

Determination of the ¹⁰⁰Mo 2vßß half life

Thanks to the robust background model one can extract the $T_{1/2}^{2\nu\beta\beta}$

Previous measurements : Uncertainty = $^{+2.9\%}_{-2.4\%}$ **arXiv:1912.07272**

Blinded analysis : From our reference fit we extract the normalization coefficient (that we don't translate in terms of half life)

Statistical uncertainty = +/-0.3 %

We estimate the systematic uncertainties induced by :

- The $M_{1,\beta/\gamma}$ range : Syst = 0.3 %
 - [200 ; 4000]
 - [500; 4000]
- The choice of binning : Syst = 0.4 % 2.
 - 1 keV fixed binning 0
 - 2 keV fixed binning 0
 - 20 keV fixed binning 0
- Statistical fluctuations in the MC : Syst = 0.1 % 3.
- Choice of sources : Syst = 0.2 % 4.

900 Counts/ keV Data 800 Model 700 **Total Background** 600 2β2ν 500 400 300 200 100 2500 Energy (keV) 1500 1000 2000 500

We have to estimate the uncertainty coming from efficiency that is expected to be $\sim 1\%$ With such errors we could achieve the most precise measurements of ¹⁰⁰Mo 2vββ half life up to date

MC simulations for CUPID

- Agata
 - GEANT4 code developed by the collaboration
 - Including the baseline geometry of CUPID
- Detector response
- MC Simulations
 - Estimate expected backgrounds, in particular in region of interest

- Working on maximum activities that we can accept for some components close to the crystals to achieve our background index goal (10⁻⁴ ckky)
- This will guide the method and the time needed to measure the radioactivity of such components

Summary

CUPID-Mo:

 $^\circ\,$ Lowest background index for bolometric experiment was observed : $3.0^{+0.7}_{-0.6} \times 10^{-3}$ ckky

Paper will be soon published

Writing paper will start soon

25

- Low crystal bulk and surface contaminations
- Compatible with CUPID Background Index Goal
- $\circ\,$ SSD model is favoured for $2\nu\beta\beta$
- $\circ\,$ The most precise measurement could be achieved for the $2\nu\beta\beta$ half life of ^{100}Mo

CUPID:

- Working on MC simulations to extract the maximum activities that can be accepted
- Will update the geometry in the Agata code with the updated version of the tower design of CUPID

BACK-UP

Where we are

Best current limits :

KamLAND-Zen on ¹³⁶Xe :

- $T_{1/2} > 2.3 \times 10^{26} yr$
- $m_{\beta\beta} < 36 156 \, meV$

arXiv:2203.02139

Experimental challenge

- $\circ Q_{\beta\beta}$ is an important factor
 - Phase space $G_{0\nu} \propto Q^5$
 - Background

- Main background is coming from natural radioactivity
 - α, β, γ

Extraction of activities from Probability Density Function

For each marginalised distributions

- Use the mode as our point estimate
- Compute the smallest 68.3 % interval around the mode

If the smallest 68.3 % interval is compatible with 0

• Compute an 90% upper limit

We can convert these point estimates and their associated errors (or limits) to activities

LÉONARD IMBERT

LÉONARD IMBERT