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I Outline

- A bit of context
T2K: ND280 10 years ago

Y

~ Future T2K: How to overcome actual limitations?

- Focus on High-Angle TPC
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I Why studying neutrinos?

» In flavour physics, neutrino sector remains the less constraint one. With many open-
questions that may be linked to Standard Model limitations

> Neutrino mass origin, mass hierarchy, CP-violation, sterile neutrino...

» Most of those measurements could be performed by studying neutrino oscillation:

> Mechanism describing the flavour evolution of neutrino as function of their energy
and distance propagation: PP, _,, (L, F)

Oscillation probabilities

» Depends on:

0.8

> Three mixing angles driving oscillation
amplitudes

Oscillation probability

0.6

v, appearance probability

> Two (3) Mass-squared differences
driving oscillation frequencies

0.4 v, disappearence probability

> One CP-violation phase. 0.2
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I Oscillation analysis strateqgy

» Measurement of neutrino oscillation implies to compare measurement before and
after oscillation

> Using prediction to know how many neutrinos are produced

> Using a measurement before neutrinos start to oscillation

> And ideally using both approaches!

Near detector measurement is 4/ 21
fundamental!



I Oscillation analysis strateqgy

» Since oscillation discovery, a worldwide effort has been put on the measurement of all

parameters
Experiments Dominant Important
Solar experiments 012 Am3,, 013
Reactor LBL Am%l 912, 913
Reactor MBL 013, | Am3z; 59|
Atmospheric 923, |Am§1,32 ’, (913, 5013
Accelerator LBL | 623, |Am3; 55, 0cp 013

> Neutrino oscillation field is now entering in the precision era thanks to T2K, NovA..

> Fundamental to measure the others: like CP-violation phase

> As long-baseline accelerator based experiments are the most sensible to CP, important
projects have been developed: DUNE, HK.

> ND280 upgrade is born in this context
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T2K: Tokai to Kamioka

Super-Kamiokande

Mt. Noguchi-
Goro

Mt. Iken-Yama 2,924 m

 y

UAT Magnat Yoke

10cm
—

Downstream
ECAL

> Proton of 30 GeV on
graphite target

» Producing pions,
kaons decaying into
(anti) neutrinos 6/21

~ Large pure water tank
- Reading out cherenkov
light with PMTs




INDzso design

» Goals: measure beam spectrum and flavor
composition before oscillations

Downstream
ECAL

Solenoid Coil

> Constraint Flux and X-section models

> Need to measure both leptonic and
hadronic (low efficiency = was not

designed for) part of nu interactions
> Design:

Barrel ECAL

> FGD: 2 Fined grained detectors composed of plastic scintillator with layers of
waters

> Nu-target + precise determination of primary vertex
> TPC: 3 Time Projected Chamber based on Micromegas technology
» Momentum and charge particle measurements + PID

> POD: Upstream detector opimised for neutral pion detection

> All detectors are surrounded by an electromagnetic calorimeter and a 0.2T

magnet 71721



I ND280 TPCs

» Requirements:

> Resolution on momentum better than 10% at 1GeV - Implies a spatial resolution
better than 700um

» dE/dx resolution better than 10% to measure nue beam contamination
> Details:

> Total active area 9m2
» @Gas mixture Ar(95)/CF4(3)/iC4H10(2)
> Electronics: 120k channels to readout
> 6 front-end + 1 mezzanine for each module
Operated since 2009 with no observation of performance
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I TPC with MicroMegas

» Time projected Chamber:

TPC1.  TPC2 TPC3

> Charged particles ionise gas molecules
producing FGDT FGD2 ECAL

> Application of an intense electric field
to drift electrons to readout planes

> 3D reconstruction 2D on readout
planes + 1D with drift time

» Micromegas as readout system:

> Few um above readout plane a mesh
supported by pillars apply a strong electric
field

> When free electrons reach the mesh, an ! I " TT " TT1T 1 I
avalanche is created

~ Amplification gap - Gain: 103-104
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> Charges are collected thanks to



Y21 ndf 63.88/26

Prob 4.944e-05

C Constant 191.9+£6.9

ND280 TPCs
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I Impacts on far detector analysis

> Alot of study are performed with the near detector allowing to better constraint far
detector analysis:

» Clear impact on FD rate and shape neutrino events

FHC 1Rp average spectrum with all systematics
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I Future T2K

» T2K provided leading measurement of oscillation PMNS but analysis is still dominated
by statistical uncertainties

> Upgrade of the beam ongoing!

> Hyper Kamiokande ongoing!

» Systematic will become important, requires more detailed studies to constraint them

> Upgrade of the Near detector!

> @Goals:

> CP-violation at 3 sigmas if equal to -pi/2 (5 sigmas with HK)
> Error on theta23 below 1.7 for maximal mixing

> Error on mass-squared difference 23 below ~1%
12/ 21



Efficiency

-
o

09
08
0.7

06 F
05
04

0.3
02

0.1

0.0

Limitations

I ND280 upgrade

> Increase angular acceptance: SK (4pi) whereas ND280 mostly forward

> Better reconstruction efficiency of the hadronic component
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I ND280 upgrade

> Limitations

> Increase angular acceptance: SK (4pi) whereas ND280 mostly forward
> Better reconstruction efficiency of the hadronic component

» Solutions: Remove POD detector and add a new target plus 2 new TPCs

> Super-FGD: Highly segmented
target of 2 millions scintillator cubes =i
readout by a 3D network a WLS -
Higher statistics, primary vertex
position, reconstruction of outgoing
hadrons

SMRD

> HA-TPC: High Angle TPC below and e
on the top of SFGD - improving = .
angular acceptance

> TOF: The whole is surrounded by
plastic scintillator planes to tag
outside background.



24 layers
(192 x 184 cubes)

£

Efficiency for stopping protons

> Polystirene-based plastic scintillator é - _| —
> Cube of 1cm side: High granularity! “F E
» Allow to reconstruct proton down to 300 MeV/c (500 ; ot e ]
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> Between pads and amplification gap add a resistive layer
made of DLC (Diamond Like Carbon)

> Allows charge spreading in X and Y as function of
time depending on resistivity values

» Advantages:
> Better resolution with less channels

> Reduce risk of sparks

> Mesh at ground allowing better electrical field
uniformity
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Prototype and test beam

Intensive detector characterisation w/ cosmic &
beam test

» Second one tested during beam test at DESY in 2019

> Define final design: Resistivity, glue - DESY + CERN test beam in 2021

thickness... > Design fixed and production launched!

» R&D for ILC project
> First prototype tested with cosmics data at Saclay

» Test beam at CERN in 2018




I Track reconstruction with PRF

» Instead of using a center of charge method to determine track positions, use the Pad
Response Function.

> Neighbouring pad contributes to the event thanks to the charge spreading
» Take advantage of it by looking at ratios:

Qpa d 0.0012 Leading pad
—_— = PRF(mtrack — xpad) 0.0010 _"_::b;lowieaji"g

. above leading
Qratzo

0.0008

» This function could be parametrised and used in

a chi-square to find positions: 00004
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I dE/dx resolution

Entries [a.u]

dE/dx resolution determine the ability to identify

the type of particles

The previous TPCs allow to reach a resolution

better than 10%

Test beam allows to test it since the beam is
composed of several particles

Find a resolution better than 10% for e- and
proton, expected to be <7%
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I Production and quality control

» Production of all ERAM modules ongoing

» Systematic characterization of detector response and electronic:

> Mesh pulsing to test electrical response of detector

> X-ray scan of the whole detector to extract gain and resolution

> Thanks to a X-ray test bench @ CERN controlled remotely: 1 module fully scanned

per week!

Gain from Gauss fit (Fe peak)
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1000
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I Conclusion

T2K has produced high quality date since 10 years and is leading measurement of
some oscillations parameters

> This performance is possible thanks to a near detector allowing to better constrain
far detector flux and interaction models

» With beam upgrade and Hyper Kamiokande systematic uncertainties will become the
limitations

» The ND280 upgrade has been designed to answer to those limitations

> With the new High-Angle TPCs and the usage of resistive micromegas the angular
acceptance will increase

> The ERAM modules have beeb characterized thanks to several prototypes and test
beam campaign.

» Performance requirements are reached even with less channels thanks to the
resistive layer and charge spreading.

> Final design has been optimized and currently the production and characterization is
ongoing. Stay tuned for physics results in the near future! 21/ 21
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