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Neutrino oscillations

Neutrino mixing described by the PMNS matrix: 3 mixing
angles and 1 complex CPV phase
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Oscillations measurements
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Long baseline accelerator-based experiments are sensitive to:

-Atmospheric parameters (023, Amas2?) through v, disappearance
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Ocp change the appearance probability differently for neutrino
and antineutrino as well as the mass ordering
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LBL experimental setup
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LBL experimental setup

Target & horns

—o (D
p

Far detector
Decay volume Near detector

0 km 0(0.1 - 1) km O(100 - 1000) km

* Proton beam of 10s GeVl

» Magnetics horns to selection hadrons charge and make a muon neutrino or
antineutrino beam

* Decay volume, where 11, K decay in neutrinos

* Near detector (ND) located at a distance of (0.1 - 1) km

- Far detector (FD) located at a distance of (100 - 1000) km

» Off-axis strategy: ND and FD are offset compared with beam direction. Maximize oscillation
probability and reduce high-energy tail of the flux
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LBL measurements

Far detector / Cross-section Detector response Oscillation probability
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LBL measurements
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LBL measurements

Far detector Flux Cross-section Detector response Oscillation probability
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LBL measurements
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LBL measurements

X Rdet(EV7 O-(Eu)a 7?) X POSC(EV7 @7 L)dEV

L

Far detector Flux Cross-section Detector response Oscillation probability
N(E) = |

Hadron production / ND and dedicated Often measured Goal of LBL
experiments cross-section  through test beam investigation
(e.g. NAG1) experiment activities. Same if

(e.g. MINERVA) ND and FD use

Curther same technology.

constrained by ND
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Flux measurements

* Neutrino flux prediction has improved enormously over the LBL era

» Thanks to hadron production experiments (e.g. NA61/SHINE) flux is known now
with an uncertainty between ~5-10%

» Relation between flux at ND and FD is nominally well understood
* [t can be improved for future LBL.:
» Hadron production experiments using replica target of the LBL experiment

 Flux measurements at ND can be performed as well: electron neutrino elastic
scattering

» |dentify, measure O(1%) “wrong sign” component of the beam
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Neutrino interactions
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N u c I e a r effe ct S '_ See Anna Ershova’s talk
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Cross-section modeling

* Modeling of neutrino-nucleus interactions continue to be the most challenging
aspect for the LBL program

* |t Is the largest uncertainty in LBL oscillation analyses, being of the order of
10-15%

» Significant progress: improving theoretical modeling and implementation of
variety of models in neutrino event generators

* New and more precise cross-section measurement at ND needed to give
direction to the development, ie to help us understand it we are converging on
the right physics within our event generators
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The T2K\ experiment

Super-Kamiokande

Mt. Noguchi-Goro
2,924 m

Mt. Ikeno-Yama
1,360 m .\

. 1,700 m below sea level E i
I : T ———

(Anti)Neutrino Beam

295 km

Physics goals:
‘Precise measurement of 023, Amz»2

‘Determine 613 and limits on Ocp
v Cross section measurements at the near detectors
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The near detector complex

Super-K

p ‘*'G:@D"‘@ ------ i U L |
Target &horns = Decay tunnel #EK ———————————
| 7 AN | ff-axi
; 118 280 m Off-axis
beam dump pnr?\onltor INGRID=225
on-axis

Monitor the
beam stability
and direction
spill-by-spill

UA1 Magnet Yoke

)N]; 3 Time projection chambers (TPC):
2 lreconstruct momentum and charge, PID

based on ionization

Downstream
ECal

. |2 Fine-grained detectors (FGD): upstream
Neutrino beam y |constituted of xy layers of plastic scintillator,
the other is alternated with water layers

An electromagnetic calorimeter (ECal) is
used to distinguish tracks from showers
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T2\ oscillation analysis strategy

Flux prediction:
external hadron production
measurements and T2K beam monitors

ND280 measurements and model:
~ select CC v, and v, interactions to

constrain flux and cross sections

Neutrino interactions model:
tuned using available cross-
sections data

Hybrid-frequentist analysis

Prediction at the Far Detector:
ND280 measurements predict the
- expected events at SK

SK measurements and model:
Select CC vﬂ/vﬂ and ve/ve candidates

after the oscillations

Extract oscillation parameters
(B13, O23, Am232, Ocp)

Ciro Riccio, Stony Brook University | P210 BSM-Nu
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ND280 Fit

l

Perform an extended binned likelihood fit to the number
of selected events in every sample (18 in total) as a
function of muon kinematics. Prior model p-value is

Flux prediction:

external hadron production S ——— A aaae
measurements and T2K beam monitors o0 EPre-iit  mvccun Byocten -
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/4% showing that our model is a good fit to data.
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Impact of the ND fit
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See David Henaff and Jaafar
Chakrani’s talks

ND280 upgrade

Main ND280 upgrade improvements:
*Improved efficiency
*|_ower threshold for protons
* Neutron kinematics

*Increased target mass (2 tons)

c>J~o 091 Muons in TPC or = c>>* 0'915_' T e e e e T T, .

e SuperFGD: 2M 1cm-cubes C oo SOPPINgINSuperr@b T & 4 . E
,g_; e A S — % 07f —=— ND280 current -

e 2 TP ' ' 1St ' & o : P — 0.6 3
Cs equipped with resistive MicroMegas £ F T £ . ND280 Uarade

LL' - : T LLI - pg -

* 6 Time-Of-Flight detectors E b~ TMuonsin "3 e .. C
E =" TPConly E - E

» Start construction in Fall 2022 and taking TR T e . :
data from April 2023. Then 4 months of B 07305 300 400500 600 700 300" 9001000
running per year until Hyper-K starts True cosf, True Proton Momentum (MeV/c)
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The NOVA experiment .

NOVA Scintillation Light \é\i’g;/flf;og;h-shiﬂing
4 Ash River | . .
o~ " xy layers of PVC filled with
rels | liquid scintillator
o BRELLLL el
| SIPENE Sr  er e Sl  S
 canciieg [P0 K 0.3 kt ND 105 m underground

N/

Fermilab

IL

14 kTon FD on srface

Physics goals:
‘Precise measurement of 823, Ams»?
-Limits on mass hierarchy and 6cp
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NOVA analysis strategy

Neutrino interactions model: tuned using
internal data ND measurements

25

[ eeee- Default GENIE
 ——— NOVA 2020 Tune
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Neutrino Beam
vV, +V, CC Selection

¢ ND Data
MEC

L_JQE
[] RES

DIS

I Other

0.6 08 1

GeV)

10.1140/epjc/s10052-020-08577-5

ND-FD extrapolation:
modify the FD MC from data-MC
differences at the ND

FD measurements and model:
Select CC v,/v, and ve/ve candidates

after the oscillations

Extract oscillation parameters
(B13, O23, Am232, Ocp)
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NOVA ND-FD extrapolation

Neutrino Mode NOVA Preliminary v-beam NOVA Preliminary
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10° Events / 11x10%° POT
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S
o
1 | | ] |

e
0

1 2 3 4 5 R 2 3 4 5
Reconstructed v, Energy [GeV] Reconstructed neutrino energy (GeV)

» Observe data-MC differences at the ND, use them to modify the FD MC

» Significantly reduces the impact of uncertainties correlated between detectors

» Especially effective at reduce uncertainties on cross-section and flux by 20%

* Reduces the size of the systematics most likely to contain “unknown unknowns”
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YPER

KK experiment

The H

Hyper-Kamiokande Intermediate

Mt. Noguchi-Goro deteCtOr
2,924 m

1,700 m below sea level

(Anti)Neutrino Beam

295 km

Physics goals:
*Measure CP Violation and mass ordering
* Atmospheric neutrinos
*Supernova neutrinos, nucleon decay and new physics

Ciro Riccio, Stony Brook University | P210 BSM-Nu 19



YPER

K sensitivity

HK 10 years (2.70E22 POT 1:3 vv) Laura Munteanu NuFact2021
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Statistics only

-------------- Improved syst. (v./V, xsec. error 2.7%)
--------------------------- T2K 2018 syst. (v./V, xsec. error 4.9%)
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Hyper-K preliminary

Hyper-K preliminary T R

rue 0 . HK Years (2.7E21 POT 1:3 viv
True normal ordering (known) CP T}‘f normal ordering 2(known) 2 ( )
sin’(,5) = 0.0218 sin*(0,,) = 0.528 |Am3,| = 2.509E-3 sin"(0,;) = 0.0218 sin(0,,) =0.528 lAmj,| = 2.509E-3

» Sensitivity to CPV is limited by systematics

* CPV discovery at 50 in 10 years for large fraction (~60%) of dcp values

* Improving the systematics model will allow for a faster discovery and access to
CPV discovery for larger fraction of dcp values
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YPER

ND280 for M

Possible upgrades of

NINJA In operation but still
statistically limited. Interesting
since has very low proton

ND2807? threshold (200 I\/IeV)
mm emulsion film \ B
np280  \WAGASCI+BabyMind i Y V
already in operation . -
since 2019 ? |
iron walter .

N
N WAGASCI

Grid scintillator
— 1 Plane scintillator

Wall MRD

Proton Module WAGASCI
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Intermediate Water Cherenkov

Arb. Norm.

Arb. Norm.
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4.0° Off-axis Flux -

4° off—axisé

|||||||||||||||||||||||||||||||||||

2.5° Off-axis Flux 7

2.5°

600 ton water loaded with Gd located ~1 km

[a—
S

AN R
|

SK oscillated flux —

5 2
T
—

Linear combination of
— N vPRISM off-axis fluxes —

—

R-R-R-R-1-2-2-R

i

-

L

Flux/[cm® 100 MEV - 1e21 POT]

02 040608 1 12 14 16 18 2
E, (GeV)
* The flux predictions at each off-axis position can be
linearly combined to match flux at the FD. Break

degeneracies between flux and cross-section.

» Low statistical uncertainty in v, cross section (3.5-7%
precision) because higher flux fraction more off-axis
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The DUNE experiment

Sanford Underground
Research Facility

Fermilab

NEUTRINO
PRODUCTION

PARTICLE

DETECTOR
UNDERGROUND

PARTICLE DETECTOR

Physics goals: Two options for Prototype @CERN
*Measure CP Violation and mass ordering the far detector:  Neutrino Platform
*Supernova neutrinos LAr single phase
*Nucleon decay with horizontal an

*New Physics vertical drift
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- 0.4 <sin®0,, < 0.6

336 kt-MW-years

624 kt-MW-years
—  Median of Throws

1o: Variations of
statistics, systematics,

and oscillation parameters

| | ] | | ] | ] ]

1-08-06-04-02 0 02 04 06 08 1
Ocp/Tt

* Assume 4FD+2ND, equal
FHC:RHC running, flux
uncertainty ~0.5% at peak

» Ocp measured at 5sigma
with 624 kt-MW-years

Already with 336 kt-MW-yr
exposure, mass ordering
sensitivity is >> 50
independent of other

parameters

Years kt-MW-years
7 336
10 624
15 1104
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https://link.springer.com/content/pdf/10.1140/epjc/s10052-020-08456-z
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- ND-LAr: 50t FV of LAr with Modular design with 7x5 array of LAFTPCs and pixel

readout for “native” 3D charge response
* ND-GAr: magnetized GAr TPC + calorimeter with rich cross-section physics

program, also muon spectrometer of ND-LAr
* SAND: On-axis beam monitor + magnetized LAr target + STT tracker with rich

cross-section physics program
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u(V=PRISM

While SAND stays all the
time on-axis, ND-GAr
and ND-LAr move to

different off-axis angles
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Same method as the IWCD for HK. Promise to
break flux and cross-section degeneracies:
any out-of-model effects are naturally present
iIn the ND data, and thus will mostly cancel
when compared to FD data.
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Conclusions

» Neutrino flux and cross-section are the important systematics to keep under
control in LBL experiments

* Near detectors in LBL experiments have improved dramatically the precision

of oscillation parameters thanks to their simultaneous measurements of flux
and cross-section

 Future LBL experiments have to push the precision even further to reach their
goal: improve cross-section and flux constraints

* Plan for future LBL is to try as much as possible to measure the final state
particles and break the degeneracy between cross-section and flux
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Backup
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Fractional errors

Fractional errors on ratio of e-like v-mode/anti-v-mode total event rates

Error source T2K 2018 (%) Improved HK (%)
Flux+cross-section (ND constrained) 4.23 0.74

NC1x 1.46 0.66

NC Other 0.14 0.04
Nucleon Removal Energy - 0.01

o(v.) & o(anti-v ) 3.22 (theory) 2.03 (measured)
Detector+Final State Interactions (FSI) 2.05 0.95

All Systematics 4.99 2.45

| aura Munteanu NuFact2021
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https://indico.cern.ch/event/855372/contributions/4441566/attachments/2305237/3921770/LBLSensitivities_LauraMunteanu.pdf

Current systematics for HK studies

T2K (PRD 103, 112008, 2021) ND: near detectors
FD: far detectors

Imperfect extrapolation

from ND to ED Source Error for CPV
\ search (%)
® x o (ND constrained) 2.7

® x o (ND unconstrained) 1.2

Estimation based on theory Nucleon removal energy 3.6

_ Uncorrelated processes
\FD T re-scattering + PN 1.6 between ND and FD
3.0

o(ve) / o(ve)

NC y + other 1.5
Detector modeling . .
& calibration = _, FD detector 15 No data driven constraint
Total 6.0

€ Need to achieve <3 % systematic uncertainties for Hyper-K

Ciro Riccio, Stony Brook University | P210 BSM-Nu
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DUNE studies

FHC unc. on FD / ND ratio
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. DUNE Simulation -
- — Total ]
- -~ Hadron production 1
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5 10
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20

Neutrino energy (GeV)

Description

Quasielastic
Axial mass for CCQE
CCQE vector form factors (BBBAOS < Dipole)

Fermi surface momentum for Pauli blocking

+0.25 y
015 GeV

N/A

+30%

Low W

Axial mass for CC resonance
Vector mass for CC resonance
Branching ratio for A — n decay
Branching ratio for A — + decay

0~ distribution in A rest frame (isotropic — RS)

£0.05 GeV
+10%
+50%
£50%

N/A

UNIVERSAL NEUTRINO GENERATOR

High W

Agr higher-twist in BY model scaling variable £,

+25%

Byt higher-twist in BY model scaling variable £, +25%
Cyv 1, valence GRVI98 PDF correction in BY model  +30%
Cyvaa valence GRV98 PDF correction in BY model  440%
Other neutral current

Axial mass for NC elastic +25%
Strange axial form factor n for NC elastic E30%
Axial mass for NC resonance +10%
Vector mass for NC resonance +5%
Misc.

Vary effective formation zone length +50%

& GLOBAL FIT

Description lo

Nucleon charge exchange probability +50%
Nucleon elastic reaction probability +30%
Nucleon inelastic reaction probability  +40%
Nucleon absorption probability +20%
Nucleon m-production probability +20%
7 charge exchange probability +50%
7 elastic reaction probability +10%
7 inelastic reaction probability +40%
7 absorption probability +20%
7 w-production probability +20%

N. events/GeV

~20% reduction
x10°

T T T | Y Y Y Y

DUNE Simulation

2 ~+ Nominal

5 10
Reconstructed energy (GeV
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