Magnetic transitions in ultra-peripheral nuclear collisions

Isabella Danhoni idanhoni@theorie.ikp.physik.tu-darmstadt.de

Institut für Kernphysik, Technische Universität Darmstadt

June/2022

[Danhoni and Navarra, Phys. Rev. C 103 (2021) 024902]

Outline

- Introduction
- The Semi-Classical Formalism
- The Quantum Formalism
- Conclusions

- 2 The Semi-Classical Formalism
- 3 The Quantum Formalism
- 4 Conclusions

Magnetic Field

It is said that the magnetic field in heavy-ion collisions is the strongest in nature:

[Brandenburg, Zha and Xu (2021) Eur. Phys. J. A 57, no.10, 299]

Introduction 00000		The Quantum Formalism 00000000	
Magnetic F	leid		

A natural place to look for this field and its effects is in ultra-peripheral relativistic heavy-ion collisions (UPC's).

Introduction 000●0	The Quantum Formalism 000000000	

$\mathsf{N}\to\Delta$

The strong magnetic field induces magnetic transitions like $N \rightarrow \Delta$ in the other nucleus. The deltas will keep moving with the nucleus and decay with 99% in $N + \pi$.

$$N \to \Delta \to N' \pi$$

- Use a classical field to study the forward pion production by the magnetic excitation of nucleons through the Δ.
- Replace this field with a flux of photons and use the photoproduction of pions as the analogous process of magnetic excitation.
- Compare the results obtained with the two formalisms.

2 The Semi-Classical Formalism

3 The Quantum Formalism

4 Conclusions

The Semi-Classical Formalism

The Quantum Formalism

The Interaction Hamiltonian

The interaction Hamiltonian will be:

$$H_{int}(t) = -ec{\mu}.ec{B}(t)$$

The magnetic dipole moment of the nucleon is given by:

Semi-Classical Calculation

We will consider a Pb-p ultra-peripheral collision and our reference frame to be the proton rest frame.

The Magnetic Field

The magnetic field is in the z direction. For simplicity, we will assume that the projectile-generated field is the same produced by a point charge:

$$\mathcal{B}_z(t)=rac{1}{4\pi}rac{qv\gamma b}{((\gamma vt)^2+b^2)^{3/2}}$$

[Asakawa, Majumder and Muller (2010) Phys. Rev. C81 064912]

 Introduction
 The Semi-Classical Formalism
 The Quantum Formalism
 Conclusions

 00000
 00000000
 00000000
 000

Wave Function

The Hamiltonian acts on the spin states, so our wave functions will be:

$$\Psi = \phi(isospin) \otimes \chi(spin) = \frac{1}{\sqrt{2}}(\phi_{S} \otimes \chi_{S} + \phi_{A} \otimes \chi_{A})$$

$$\begin{array}{ll} |p \uparrow \rangle &=& \displaystyle \frac{1}{3\sqrt{2}} [udu(\downarrow\uparrow\uparrow + \uparrow\uparrow\downarrow -2\uparrow\downarrow\uparrow) + duu(\uparrow\downarrow\uparrow + \uparrow\uparrow\downarrow -2\downarrow\uparrow\uparrow) \\ &+& uud(\uparrow\downarrow\uparrow + \downarrow\uparrow\uparrow -2\uparrow\uparrow\downarrow)] \\ |\Delta^+\uparrow\rangle &=& \displaystyle \frac{1}{3} (uud + udu + duu)(\uparrow\uparrow\downarrow + \uparrow\downarrow\uparrow + \downarrow\uparrow\uparrow) \end{array}$$

	The Semi-Classical Formalism	The Quantum Formalism 00000000	
Deutsuikeet			

Perturbation Theory

The intensity of the magnetic field is of order $eB \simeq m_{\pi}^2$. The energy that can be transferred to a nucleon is:

$$\sqrt{eB} \simeq m_{\pi}$$

And we know that:

$$M_{\Delta} - M_N \simeq 2m_{\pi}$$

$$\begin{array}{ll} \mbox{Initial state:} & |\psi^0\rangle = |\rho\rangle & \Rightarrow P = |c_\Delta|^2 \\ \mbox{Final state:} & |\psi^1\rangle = c_N |\rho\rangle + c_\Delta |\Delta\rangle \end{array}$$

Transition Amplitude

Under magnetic field excitation, the amplitude for the transition $|p\uparrow\rangle \rightarrow |\Delta^+\uparrow\rangle$ using time-dependent perturbation theory will be given by:

$$c_{\Delta} = -i \int_{-\infty}^{t} e^{i E_{fi} t'} \left\langle \Delta^+ \uparrow | \mathcal{H}_{int} | p \uparrow
ight
angle \, dt'$$

Giving the transition element:

$$\langle \Delta^+ \uparrow | H_{int} | p \uparrow \rangle = rac{\sqrt{2}Be}{3m}$$

The Semi-Classical Formalism

The Quantum Formalism

Cross Section

The cross section for $p \rightarrow \Delta$ is given by:

$$\sigma = \int |c_{\Delta}|^2 d^2 b \tag{1}$$

Substituting c_{Δ} we get:

$$\sigma = \frac{Z^2 e^4}{9\pi m^2} \left(\frac{E_{fi}}{v\gamma}\right)^2 \int_R^\infty \left[K_1\left(\frac{E_{fi}b}{v\gamma}\right)\right]^2 b \, db$$

The Semi-Classical Formalism

The Quantum Formalism

Cross Section

$$\sigma_{tot} = A \sigma$$

Cross section as a function of the center of mass frame.

Isabella Danhoni

The Semi-Classical Formalism	The Quantum Formalism	

Pion Production

If we suppose every event will produce a pion, the number of pions detected can be obtained by:

$$\frac{dR}{dt} = \mathcal{L} \times \sigma$$

Energy	Cross Section	Luminosity	Number of Pions
	(b)	$(cm^{-2}s^{-1})$	(s^{-1})
5.00 TeV	5.39	6.2×10 ²⁷	3.34 ×10 ⁴
2.76 TeV	4.63	1×10^{26}	4.63×10^{2}
5.20 TeV	5.43	6×10 ²⁷	3.28×10^4

- 2 The Semi-Classical Formalism
- **3** The Quantum Formalism

4 Conclusions

The Semi-Classical Formalism

The Quantum Formalism

The Photon Flux Approach

In this formalism the magnetic field is replaced by a flux of photons. The projectile becomes a source of photons.

$$\sigma_{\mathit{tot}} = (\mathsf{flux} \; \mathsf{of} \; \mathsf{photons}) \otimes \sigma_\gamma$$

Photoproduction of the Neutron Pion

In order to compute the total cross section, first, we need to compute the process:

$$\gamma + p \rightarrow p + \pi^0$$

For that, we need an expression for this reaction that can be used in high energy.

The Semi-Classical Formalism

The Quantum Formalism

Jones and Scadron Formula

A simple parametrization for this process can be found in an article written by Jones and Scadron:

$$\frac{d\sigma_{\gamma}}{d\Omega} = \frac{\alpha}{12} \frac{\omega}{mW} \frac{\sin^2(\delta)}{\Gamma} [|F_+^*|^2 f(\theta) + |G_+^*|^2 g(\theta)]$$

Where :

$$W = \sqrt{m^2 + 2m\omega}$$

$$F_{+}^{*} = (G_{M}^{*} - 3G_{E}^{*})$$
$$G_{+}^{*} = (G_{M}^{*} + G_{E}^{*})$$
$$\sin^{2} \delta = |m_{\Delta}\Gamma/(s - m_{\Delta}^{2} + im_{\Delta}\Gamma)|^{2}$$

[H. F Jones, M. D. Scadron, Ann. Phys. 81, 1 (1973)]

Adjusting to the Data

Adjusting Jones and Scadron parametrizaton to the data:

Figure: Jones and Scadron parametrization compared to the data for several Γ

Pascalutsa and Phillips, Phys. Rev. C 67, 055202 (2003)

The Semi-Classical Formalism

The Quantum Formalism

Nucleus-Nucleus interaction

The number of equivalent photons incident on the target per unit area: [Bertulani, Baur (1988) Phys. Reports 163, 5–6]

$$N(\omega, b) = \frac{Z_1^2 \alpha}{\pi} \left(\frac{xc}{b^2 v^2}\right)^2 \left[K_1^2(x) + 1/\gamma^2 K_0^2(x)\right]$$

where

$$x = \frac{\omega b}{\gamma v}$$

Equivalent Photon Approximation

The photon spectra is given by: [Bertulani, Baur (1988) Phys. Reports 163, 5-6]

$$n(\omega) = \frac{Z_1^2 \alpha}{\pi} \left[2\xi K_0(\xi) K_1(\xi) - \xi^2 (K_1^2(\xi) - K_0^2(\xi)) \right]$$

and

$$\xi = \frac{\omega(R_A + R_B)}{\gamma}$$

The average energy of an emitted photon can be estimated as:

$$\bar{\omega} = \frac{\int_0^{\gamma m_N} n(\omega) \omega d\omega}{\int_0^{\gamma m_N} n(\omega) d\omega}$$

For the LHC, $\gamma pprox$ 1000 which means $\omega = 10 \, {\it GeV}$ $_{[arXiv:2011.00726 \ [hep-ph]]}$

The Total Cross Section

The cross section of this process can be written as a function of the nucleonphoton cross section: [Bertulani, Baur (1988) Phys. Reports 163, 5–6]

$$\sigma = \int \frac{d\omega}{\omega} n(\omega) \sigma_{\gamma N \to N\pi}$$

Where $n(\omega)$ is the photon spectrum.

The Semi-Classical Formalism

The Quantum Formalism

Pb-p Ultra-peripheral Collision

Plotting the results for both formalisms:

Comparing the curves we can observe that the difference between the curves approaches 9% for high energies.

```
[arXiv:2011.00726 [hep-ph]]
```

- 2 The Semi-Classical Formalism
- 3 The Quantum Formalism

4 Conclusions

Conclusions

- These results suggest that the classical approximation of the magnetic field reproduces most of the photon interaction in photoproduction in high energies.
- In heavy-ion collisions, one can treat classically the magnetic field.
- The photoproduction of the neutral pion can be used to test this idea.

Thank You!

