Non-perturbative spectral properties of correlation functions at finite-temperature

Peter Lowdon

(Goethe University Frankfurt)

Local QFT beyond the vacuum

"Local QFT" → Define QFTs using a core set of physically-motivated assumptions, e.g. causality, Poincaré invariance, positive energy, ...

- This approach has led to many fundamental *non-perturbative* insights:
 - \rightarrow Relationship between Minkowski and Euclidean QFTs
 - \rightarrow *CPT* is a symmetry of *any* QFT
 - \rightarrow Connection between spin & particle statistics
 - \rightarrow Existence of dispersion relations, etc.

But... this framework only describes QFTs in the vacuum state

 \rightarrow Can one apply a similar approach to regimes where T > 0 or $\mu \neq 0$?

Yes! Important progress was made by J. Bros and D. Buchholz

→ See: [Z. Phys. C 55 (1992), Ann. Inst. H.Poincare Phys. Theor. 64 (1996), Nucl. Phys. B 429 (1994), Nucl. Phys. B 627 (2002)]

Non-perturbative implications

 By demanding fields to be local ([Φ(x), Φ(y)]=0 for (x-y)²< 0) this imposes significant constraints on the structure of correlation functions

→ For $T=1/\beta > 0$, the scalar spectral function has the representation:

$$\rho(p_0, \vec{p}) := \mathcal{F}\left[\langle \Omega_\beta | \left[\phi(x), \phi(y)\right] | \Omega_\beta \rangle\right] = \int_0^\infty ds \int \frac{d^3 \vec{u}}{(2\pi)^2} \ \epsilon(p_0) \ \delta\left(p_0^2 - (\vec{p} - \vec{u})^2 - s\right) \widetilde{D}_\beta(\vec{u}, s)$$

$$\underbrace{\text{Note: this is a non-perturbative representation!}}_{\text{Mote: this is a non-perturbative representation!}} \qquad \text{``Thermal spectral density''}$$

• In the limit of vanishing temperature one recovers the well-known Källén-Lehmann spectral representation:

$$\rho(p_0, \vec{p}) \xrightarrow{\beta \to \infty} 2\pi \,\epsilon(p_0) \int_0^\infty ds \,\,\delta(p^2 - s) \,\rho(s) \qquad \qquad \text{e.g. } \rho(s) = \delta(s - m^2) \text{ for a massive free theory}$$

Important question: what does the thermal spectral density $D_{\beta}(\boldsymbol{u},s)$ look like?

Non-perturbative implications

• A natural decomposition [Bros, Buchholz, NPB 627 (2002)] is:

 \rightarrow Damping factors hold the key to understanding in-medium effects!

Damping factors from Euclidean data

- The constraints imposed by locality offer new ways in which to understand, and compute, in-medium observables
- It turns out that these constraints also have significant implications in *Euclidean* spacetime
 - Important to understand, since many non-perturbative techniques, e.g. lattice, functional methods (DSEs, FRG), are restricted to, or optimised for, calculations in imaginary time τ
- In many instances T>0 Euclidean data is used to extract observables, e.g. spectral functions from $W_E(\tau) = \int d^3x W_E(\tau, \vec{x})$

$$\mathcal{W}_{E}(\tau) = \int_{0}^{\infty} \frac{d\omega}{2\pi} \frac{\cosh\left[\left(\frac{\beta}{2} - |\tau|\right)\omega\right]}{\sinh\left(\frac{\beta}{2}\omega\right)} \rho(\omega)$$
 Determine $\rho(\omega)$ given $W_{E}(\tau)$

 \rightarrow Problem is ill-conditioned, need additional information!

Damping factors from Euclidean FRG data

• However, locality constraints imply that particle damping factors $D_{m,\beta}(\mathbf{x})$ can be directly calculated from Euclidean data, avoiding the inverse problem [P.L., 2201.12180]

$$D_{m,\beta}(\vec{x}) \sim e^{|\vec{x}|m} \int_0^\infty \frac{d|\vec{p}|}{2\pi} \ 4|\vec{p}| \sin(|\vec{p}||\vec{x}|) \ \widetilde{G}_\beta(0,|\vec{p}|).$$

Holds for large separation $|\mathbf{x}|$

- In [P.L., R.-A. Tripolt, 2202.09142] pion propagator data from the quark-meson model (FRG calculation) was used to compute the damping factor at different values of T via the analytic relation above
- Fits to the resulting data were consistent with the form:

$$D_{m_{\pi},\beta}(\vec{x}) = \alpha_{\pi} e^{-\gamma_{\pi}|\vec{x}|}$$

Damping factors from Euclidean FRG data

• Using the T > 0 spectral representation one finds:

Damping factors from Euclidean lattice data

- In the FRG analysis *p*-space data was used to extract $D_{m,\beta}(\mathbf{x})$. Can one use *x*-space data instead? Yes!
 - \rightarrow A quantity of particular interest in lattice studies is the spatial correlator of particle-creating operators, defined:

$$C(z) = \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \int_{-\frac{\beta}{2}}^{\frac{\beta}{2}} d\tau \, \mathcal{W}_E(\tau, \vec{x})$$

e.g. meson operators

 $\mathcal{W}_E(\tau, \vec{x}) = \langle \Omega_\beta | \overline{\psi} \Gamma \psi(x) \, \overline{\psi} \Gamma \psi(0) | \Omega_\beta \rangle$

- Usually, the large-z behaviour of $C(z) \sim exp(-m_{scr}|z|)$ is used to extract particle screening masses m_{scr}
- This quantity is important for understanding phenomena such as quarkonium melting and (effective) chiral restoration in QCD

[HotQCD collaboration, Phys. Rev. D 100 (2019)]

Damping factors from Euclidean lattice data

• Spectral function constraints imply the following connection between the spatial correlator and thermal spectral density [P.L, O. Philipsen, *in preparation*]

$$C(z) = \frac{1}{2} \int_0^\infty ds \int_{|z|}^\infty dR \ e^{-R\sqrt{s}} D_\beta(R,s)$$

→ Damping factor of the lightest *T*=0 state: $D_{m,\beta}(|\vec{x}|=z) \sim -2e^{mz} \frac{dC(z)}{dz}, \quad z \to \infty$

- Once the damping factors of all contributing states are known, one can compute the corresponding spectral function, in particular $\rho(\omega, p=0)$
- In QCD, perhaps the simplest spatial correlator example is that of the light quark pseudoscalar meson operator $\mathcal{O}_{PS}^a = \overline{\psi}\gamma_5 \frac{\tau^a}{2}\psi$

<u>Goal</u>: Use lattice data from [Rohrhofer et al. *PRD* **100** (2019)] ($N_f=2$ with chiral fermions and physical masses) to compute the spectral function $\rho_{PS}(\omega)$

Damping factors from Euclidean lattice data

- Step 1: Perform fits to the spatial correlator data $C_{PS}(z)$ to obtain the functional dependence at different temperatures ($Ae^{-Bz} + Ce^{-Dz}$ ansatz describes the data very well)
- **Step 2**: Calculate the corresponding damping factors from $C_{PS}(z)$ (for π and π^*)
- **Step 3**: Use $D_{m,\beta}$ to compute $\rho_{PS}(\omega)$ analytically using the spectral representation

The π and π* dominate the spectral function at these T, and the π has a pronounced peak in some range T > T_{pc} [P.L, O. Philipsen, *in preparation*]

 \rightarrow Non-perturbative effects still important above T_{pc}

• Screening masses are defined: $m_{scr} = m_{T=0} + \gamma$, where $\gamma \rightarrow 0$ for $T \rightarrow 0$. This approach can also be used to extract the *T*-dependence of f_{π}/f_{π^*}

Summary & outlook

- Local QFT is an analytic framework that attempts to address the fundamental question "what is a QFT?"
- The framework can be extended to T>0, and this has important implications, including:
 - \rightarrow Spectral representations for thermal correlators
 - → Ability to extract real-time observables from Euclidean data
 - \rightarrow Interpretation of screening masses
- So far only real scalar fields $\Phi(x)$ with T > 0 considered, but this approach can be extended (higher spin, $\mu \neq 0$). Work in progress!
 - → This framework provides a way of obtaining non-perturbative insights into the phase structure of QFTs, and the resulting in-medium phenomena

[[]Brookhaven National Lab]

Backup: Local QFT

- In the 1960s, A. Wightman and R. Haag pioneered an approach which set out to answer the fundamental question "what is a QFT?"
- The resulting approach, Local QFT, defines a QFT using a core set of physically motivated axioms

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert space \mathcal{H} which possesses a continuous unitary representation $U(a, \alpha)$ of the Poincaré spinor group $\overline{\mathscr{P}}_{+}^{\uparrow}$.

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator P^{μ} is confined to the closed forward light cone $\overline{V}^{+} = \{p^{\mu} \mid p^{2} \geq 0, p^{0} \geq 0\}$, where $U(a, 1) = e^{iP^{\mu}a_{\mu}}$.

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector $|0\rangle$ (the vacuum state) which is a unique translationally invariant state in \mathcal{H} .

Axiom 4 (Field operators). The theory consists of fields $\varphi^{(\kappa)}(x)$ (of type (κ)) which have components $\varphi_l^{(\kappa)}(x)$ that are operator-valued tempered distributions in \mathcal{H} , and the vacuum state $|0\rangle$ is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields $\varphi_l^{(\kappa)}(x)$ transform covariantly under the action of $\overline{\mathscr{P}}_+^{\uparrow}$:

 $U(a,\alpha)\varphi_i^{(\kappa)}(x)U(a,\alpha)^{-1} = S_{ij}^{(\kappa)}(\alpha^{-1})\varphi_j^{(\kappa)}(\Lambda(\alpha)x + a)$

where $S(\alpha)$ is a finite dimensional matrix representation of the Lorentz spinor group $\overline{\mathscr{L}_{+}^{\uparrow}}$, and $\Lambda(\alpha)$ is the Lorentz transformation corresponding to $\alpha \in \overline{\mathscr{L}_{+}^{\uparrow}}$.

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of the fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$ are space-like separated, then:

$$[\varphi_l^{(\kappa)}(f),\varphi_m^{(\kappa')}(g)]_{\pm}=\varphi_l^{(\kappa)}(f)\varphi_m^{(\kappa')}(g)\pm\varphi_m^{(\kappa')}(g)\varphi_l^{(\kappa)}(f)=0$$

when applied to any state in \mathcal{H} , for any fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$.

A. Wightman

[R. F. Streater and A. S. Wightman, *PCT*, *Spin and Statistics, and all that* (1964).]

R. Haag

[R. Haag, *Local Quantum Physics*, Springer-Verlag (1992).]

Backup: Local QFT beyond the vacuum

• <u>Idea</u>: Look for a generalisation of the standard axioms that is compatible with T > 0, and approaches the vacuum case for $T \rightarrow 0$

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert space \mathcal{H} which possesses a continuous unitary representation $U(a, \alpha)$ of the Poincaré spinor group $\overline{\mathscr{P}}_{+}^{\uparrow}$.

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator P^{μ} is confined to the closed forward light cone $\overline{V}^{+} = \{p^{\mu} \mid p^{2} \geq 0, p^{0} \geq 0\}$, where $U(a, 1) = e^{iP^{\mu}a_{\mu}}$.

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector $|0\rangle$ (the vacuum state) which is a unique translationally invariant state in \mathcal{H} .

Axiom 4 (Field operators). The theory consists of fields $\varphi^{(\kappa)}(x)$ (of type (κ)) which have components $\varphi_l^{(\kappa)}(x)$ that are operator-valued tempered distributions in \mathcal{H} , and the vacuum state $|0\rangle$ is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields $\varphi_l^{(\kappa)}(x)$ transform covariantly under the action of $\overline{\mathscr{P}}_+^{\uparrow}$:

 $U(a,\alpha)\varphi_i^{(\kappa)}(x)U(a,\alpha)^{-1} = S_{ij}^{(\kappa)}(\alpha^{-1})\varphi_j^{(\kappa)}(\Lambda(\alpha)x + a)$

where $S(\alpha)$ is a finite dimensional matrix representation of the Lorentz spinor group $\overline{\mathscr{L}_{+}^{\uparrow}}$, and $\Lambda(\alpha)$ is the Lorentz transformation corresponding to $\alpha \in \overline{\mathscr{L}_{+}^{\uparrow}}$.

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of the fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$ are space-like separated, then:

$$[\varphi_l^{(\kappa)}(f),\varphi_m^{(\kappa')}(g)]_{\pm} = \varphi_l^{(\kappa)}(f)\varphi_m^{(\kappa')}(g) \pm \varphi_m^{(\kappa')}(g)\varphi_l^{(\kappa)}(f) = 0$$

when applied to any state in \mathcal{H} , for any fields $\varphi_l^{(\kappa)}, \varphi_m^{(\kappa')}$.

Backup: Damping factors from asymptotic dynamics

- Since all observable quantities are computed using correlation functions, which are characterised by *damping factors*, one can use these to gain new insights into the properties of QFTs when T>0
- It has been proposed [Bros, Buchholz, NPB 627 (2002)] that these quantities are controlled by the large-time x₀ dynamics of the theory

 \rightarrow Need to take this into account in definition of scattering states!

Backup: Damping factors from asymptotic dynamics

 <u>Idea</u>: thermal scattering states are defined by imposing an asymptotic field condition [*NPB* 627 (2002)]:

Asymptotic fields Φ_0 are assumed to satisfy dynamical equations, but only at large x_0

• Given that the thermal spectral density has the decomposition

$$\widetilde{D}_{\beta}(\vec{u},s) = \widetilde{D}_{m,\beta}(\vec{u})\,\delta(s-m^2) + \widetilde{D}_{c,\beta}(\vec{u},s)$$

- it follows that: **1.** The continuous contribution to $\langle \Omega_{\beta} | \phi(x) \phi(y) | \Omega_{\beta} \rangle$ is suppressed for large x_0
 - 2. The particle damping factor $\widetilde{D}_{m,\beta}(\boldsymbol{u})$ is **uniquely fixed** by the asymptotic field equation
- This means that the non-perturbative thermal effects experienced by particle states are entirely controlled by the asymptotic dynamics!

Backup: Φ^4 theory for T > 0

• Applying the asymptotic field condition for ϕ^4 theory, the resulting damping factors have the form [*NPB* 627 (2002)]:

$$\rightarrow \text{ For } \boldsymbol{\lambda} < \mathbf{0}: \quad D_{m,\beta}(\vec{x}) = \frac{\sin(\kappa |\vec{x}|)}{\kappa |\vec{x}|} \quad \rightarrow \text{ For } \boldsymbol{\lambda} > \mathbf{0}: \quad D_{m,\beta}(\vec{x}) = \frac{e^{-\kappa |\vec{x}|}}{\kappa_0 |\vec{x}|}$$

where κ is defined with r = m/T: $\kappa = T\sqrt{|\lambda|}K(r), \quad K(r) = \sqrt{\int \frac{d^3\hat{q}}{(2\pi)^3 2\sqrt{|\hat{q}|^2 + r^2}} \frac{1}{e^{\sqrt{|\hat{q}|^2 + r^2}} - 1}}$

→ The parameter κ has the interpretation of a thermal width: $\kappa \rightarrow 0$ for $T \rightarrow 0$, or equivalently κ^{-1} is mean-free path

• Now that one has the exact dependence of $D_{m,\beta}(\mathbf{x})$ on the external physical parameters, in this case T, m and λ , one can use this to calculate observables *analytically*

Backup: $\boldsymbol{\Phi}^4$ theory for T > 0

- Of particular interest is the *shear viscosity* η , which measures the resistance of a medium to sheared flow
 - \rightarrow This quantity can be determined from the spectral function of the spatial traceless energy-momentum tensor

$$\rho_{\pi\pi}(p_0) = \lim_{\vec{p} \to 0} \mathcal{F}\left[\langle \Omega_\beta | \left[\pi^{ij}(x), \pi_{ij}(y) \right] | \Omega_\beta \rangle \right](p)$$

... and η is recovered via the Kubo relation

$$\eta = \frac{1}{20} \lim_{p_0 \to 0} \frac{d\rho_{\pi\pi}}{dp_0}$$

• Using $D_{m,\beta}(\mathbf{x})$ for $\lambda < 0$, the EMT spectral function $\rho_{\pi\pi}$ has the form:

- The presence of interactions causes resonant peaks to appear \rightarrow peaked when $p_0 \sim \kappa = 1/\ell$
- For $\lambda{\rightarrow}0$ the free-field result is recovered, as expected
- The dimensionless ratio m/T controls the magnitude of the peaks

Backup: Φ^4 theory for T > 0

 Applying Kubo's relation, the shear viscosity η₀ arising from the asymptotic states can be written [P.L., R.-A. Tripolt, J. M. Pawlowski, D. H. Rischke, PRD 104, 065010 (2021)]

$$\eta_0 = \frac{T^3}{15\pi} \left[\frac{\mathcal{K}_3\left(\frac{m}{T}, 0, \infty\right)}{\sqrt{|\lambda|}} + \sqrt{|\lambda|} \,\mathcal{K}_1\left(\frac{m}{T}, 0, \infty\right) + \frac{\mathcal{K}_4\left(\frac{m}{T}, \sqrt{|\lambda|} K\left(\frac{m}{T}\right), \sqrt{|\lambda|} K\left(\frac{m}{T}\right)\right)}{4|\lambda|} \right]$$

 \rightarrow For fixed coupling, η_0/T^3 is entirely controlled by functions of m/T

Backup: Φ^4 theory for T > 0

• What about the case $\lambda > 0? \rightarrow \eta_0$ diverges!

Why? – The particle damping factor $D_{m,\beta}(\mathbf{u})$ does not decay rapidly enough at large momenta

- This characteristic is related to the "bad" UV behaviour of the quartic interaction, i.e. the triviality of Φ^4 appears to have an impact beyond T=0!
- In [PRD 104, 065010 (2021)] it was shown more generally that the finiteness of η_0 is related to the existence of thermal equilibrium

If the KMS condition holds $\implies \eta_0$ is finite

- This procedure demonstrates that asymptotic dynamics can be used to explore the non-perturbative properties of QFTs when T>0
 - → Can also calculate other observables, e.g. transport coefficients, entropy density, pressure, etc.

Backup: spectral representations

• For thermal asymptotic states, the spectral function $ho_{\pi\pi}$ has the form

$$\rho_{\pi\pi}(p_0) = \sinh\left(\frac{\beta}{2}p_0\right) \int \frac{d^3\vec{q}}{(2\pi)^4} \frac{2}{3} |\vec{q}|^4 \int_{-\infty}^{\infty} dq_0 \frac{\widetilde{C}_{\beta}(q_0, \vec{q}) \,\widetilde{C}_{\beta}(p_0 - q_0, \vec{q})}{\sinh\left(\frac{\beta}{2}q_0\right) \sinh\left(\frac{\beta}{2}(p_0 - q_0)\right)}$$

... which after applying the generalised KL representation, together with the Kubo relation, implies

$$\begin{split} \eta_0 &= \frac{T^5}{240\pi^5} \int_0^\infty ds \int_0^\infty dt \int_0^\infty d|\vec{u}| \int_0^\infty d|\vec{v}| \, |\vec{u}| |\vec{v}| \, \widetilde{D}_\beta(\vec{u},s) \, \widetilde{D}_\beta(\vec{v},t) \\ &\times \left[4 \left[1 + \epsilon(|\vec{u}| - |\vec{v}|) \right] \left\{ \frac{|\vec{v}|}{T} \, \mathcal{I}_3\!\left(\frac{\sqrt{t}}{T}, \, 0, \infty \right) + \frac{|\vec{v}|^3}{T^3} \, \mathcal{I}_1\!\left(\frac{\sqrt{t}}{T}, \, 0, \infty \right) \right\} \\ &+ \left\{ \mathcal{I}_4\!\left(\frac{\sqrt{t}}{T}, \frac{|\vec{v}|}{T}, \frac{s - t + (|\vec{u}| + |\vec{v}|)^2}{2(|\vec{u}| + |\vec{v}|)T} \right) + \epsilon(|\vec{u}| - |\vec{v}|) \, \mathcal{I}_4\!\left(\frac{\sqrt{t}}{T}, \frac{|\vec{v}|}{T}, \frac{s - t + (|\vec{v}| - |\vec{u}|)^2}{2(|\vec{v}| - |\vec{u}|)T} \right) \right\} \right] \end{split}$$

• The model dependence of η_0 factorises, and is controlled by the thermal spectral density $D_{\beta}(\mathbf{u}, s)$

Backup: Euclidean spectral relations

• One can use the assumptions of local QFT at finite *T* to put constraints on the the structure of Euclidean correlation functions

→ From the KMS condition and locality:

$$\mathcal{W}_E(\tau, \vec{x}) = \frac{1}{\beta} \sum_{N=-\infty}^{\infty} w_N(\vec{x}) e^{\frac{2\pi i N}{\beta}\tau}$$

• The Fourier coefficients of the Euclidean two-point function are then related to the thermal damping factors as follows [P.L., 2201.12180]:

$$w_N(\vec{x}) = \frac{1}{4\pi |\vec{x}|} \left[D_m(\vec{x}) e^{-|\vec{x}|\sqrt{m^2 + \omega_N^2}} + \int_0^\infty ds \, e^{-|\vec{x}|\sqrt{s + \omega_N^2}} D_c(\vec{x}, s) \right]$$

- \rightarrow The continuous component $D_c(\mathbf{x},s)$ is exponentially suppressed!
- $\omega_N = 2\pi NT$ are the Matsubara frequencies. For N=0 this leads to:

$$\int_{-\frac{\beta}{2}}^{\frac{\beta}{2}} d\tau \, \mathcal{W}_E(\tau, \vec{x}) \sim \frac{1}{4\pi |\vec{x}|} D_{m,\beta}(\vec{x}) \, e^{-|\vec{x}|m}$$

Backup: damping factors from Euclidean data

• Using the analytic relations derived in [PRD 104, 065010 (2021)] for the shear viscosity as a function of the damping factor, the numerically extracted values for $D_{\pi,\beta}(\mathbf{x})$ can be used to compute the shear viscosity

- Can compare these results with those obtained using chiral perturbation theory
 - \rightarrow Very similar qualitative features!

[R. Lang, N. Kaiser, W. Weise, EPJ A 48 (2012)]