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Local QFT beyond the vacuum

* This approach has led to many fundamental non-perturbative insights:

iT0/2
— Relationship between Minkowski and Euclidean QFTs \

CPT is a symmetry of any QFT

_)
— Connection between spin & particle statistics
_)

Existence of dispersion relations, etc.

But... this framework only describes QF Ts in the vacuum state

— Can one apply a similar approach to regimes where T >0 or uy z0 ?
Yes! Important progress was made by J. Bros and D. Buchholz

— See: [Z. Phys. C 55 (1992), Ann. Inst. H.Poincare Phys. Theor. 64 (1996),
Nucl. Phys. B 429 (1994), Nucl. Phys. B 627 (2002)]




Non-perturbative implications

* By demanding fields to be local ([®(x),®(y)]=0 for (x-y)’< 0) this imposes

significant constraints on the structure of correlation functions

— For T=1/B > 0, the scalar spectral function has the representation:

> d>u L ~
plro,7) = F (] [6(2), 000 19)] = [ ds [ 555 elo) 8o — (5 0° — 5) Di(i. o)
0 (2m) /
Note: this is a non-perturbative representation! }*J:ﬁ,;,;,;,*s;;:i;;,;;,;;i;yi'*i
* In the limit of vanishing temperature one recovers the well-known
Kallén-Lehmann spectral representation:
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Important question: what does the thermal spectral density Ds(u,s) look like?




Non-perturbative implications

* A natural decomposition [Bros, Buchholz, NPB 627 (2002)] is:
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— Damping factors hold the key to understanding in-medium effects!




Damping factors from Euclidean data

* The constraints imposed by locality offer new ways in which to understand,

and compute, in-medium observables

* It turns out that these constraints also have significant implications in
Euclidean spacetime

— Important to understand, since many non-perturbative techniques,
e.g. lattice, functional methods (DSEs, FRG), are restricted to, or
optimised for, calculations in imaginary time T

* In many instances T>0 Euclidean data is used to extract observables, e.g.
spectral functions from Wg(7) = [ d®z Wg(7, 7)
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WE(T):/O - h[(Q H) } | |

p(w) - Determine p(w) given W (1)
2 sinh (gw) ;()g 777777 e(7)

— Problem is ill-conditioned, need additional information!



Damping factors from Euclidean FRG data

* However, locality constraints imply that particle damping factors D, 5(x)
can be directly calculated from Euclidean data, avoiding the inverse
problem [P.L., 2201.12180]
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* In [P.L., R-A. Tripolt, 2202.09142] pion propagator data from the quark-meson
model (FRG calculation) was used to compute the damping factor at

different values of T via the analytic relation above

|z

* Fits to the resulting data were consistent with the form: |D,,_3(Z) =aze "

* D, 5(x) can then be used as input for o]
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Damping factors from Euclidean FRG data

* Using the T > 0 spectral representation one finds:
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Damping factors from Euclidean lattice data

* In the FRG analysis p-space data was used to extract D, z(x). Can one use

x-space data instead? Yes!

— A quantity of particular interest in lattice studies is the spatial

correlator of particle-creating operators, defined:
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[HotQCD collaboration, Phys. Rev. D 100 (2019)]



Damping factors from Euclidean lattice data

* Spectral function constraints imply the following connection between the

spatial correlator and thermal spectral density [P.L, O. Philipsen, in preparation]

1 oo oo
C(z) = 5/0 ds/H dR e BV Dy(R, s)

= mz dC
— Damping factor of the lightest T=0 state: |Dn (|7 =2) ~ —2e diZ)’ z— 00

* Once the damping factors of all contributing states are known, one can

compute the corresponding spectral function, in particular p(w, p=0)

* In QCD, perhaps the simplest spatial correlator example is that of the light

e a
quark pseudoscalar meson operator Ofy = ¢y55 1




Damping factors from Euclidean lattice data

~ Step 1: Perform fits to the spatial correlator data Cp5(z) to obtain the functional dependence at

different temperatures (Ae ®+ Ce™ ansatz describes the data very well)

~ Step 2: Calculate the corresponding damping factors from Cpg(z) (for 1 and 1t*)

>

Step 3: Use D, zto compute pps(w) analytically using the spectral representation
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* The T and m* dominate the spectral function at these T, and the 1T has a pronounced peak in
some range T >T, [P.L, O. Philipsen, in preparation]

— Non-perturbative effects still important above T,

* Screening masses are defined: m,, = my_y + Y, where y—0 for T—0. This approach can
also be used to extract the T-dependence of £ /f,«




Summary & outlook

* Local QFT is an analytic framework that attempts to address the fundamental
question “what is a QFT?”

* The framework can be extended to T >0, and this has important

implications, including:
— Spectral representations for thermal correlators
— Ability to extract real-time observables from Euclidean data
— Interpretation of screening masses
* So far only real scalar fields &(x) with T> 0 considered, but this approach

can be extended (higher spin, p # 0). Work in progress!

— This framework provides a way of obtaining
non-perturbative insights into the phase structure

of QFTs, and the resulting in-medium phenomena

[Brookhaven National Lab]



Backup: Local QFT

* In the 1960s, A. Wightman and R. Haag pioneered an approach which
set out to answer the fundamental question “what is a QFT?”

* The resulting approach, Local QFT, defines a QFT using a core set of
physically motivated axioms

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert

space H which possesses a continuous unitary representation Ula, o) of the Poincaré

spinar group 7T i
_ o _ A. Wightman

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator

P* is confined to the closed forward light cone VY = {p* | p* = 0, p" = 0}, where [R. F. Streater and A. S. Wightman, PCT,

Ufa, 1) = e, Spin and Statistics, and all that (1964).]

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector |0) (the

vacuum state) which is a unigue translationally invariant state in H.

Axiom 4 (Field operators). The theory consists of fields o' (z) (of type (k) ) which
have components p}":(.r} that are operator-valued tempered distributions in H, and the

vacuum state |0) is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields ;}"'(:r} transform covariantly under
the action of & 1, :

Ula, )™ (x)U(a,0) " = S'T.[_:.":(r} 1),3_';":(.-'\(0),:' +a)

where S{«) is a finite dimensional matriz representation of the Lorentz spinor group

i IT and A(a) is the Loventz transformation corresponding to o € ).

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of
the fields o™, o) are space-like separated, then:
(). 080 ()]s = A0 (e (9) £ 8 ()0l () = 0 R. Haag
[R. Haag, Local Quantum
Physics, Springer-Verlag (1992).]

. . - v {8} (gt
when applied to any state in H, for any fields ¢, @<,




Backup: Local QFT beyond the vacuum

* Idea: Look for a generalisation of the standard axioms that is

compatible with T > 0, and approaches the vacuum case for T— 0

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert

[ —m e —
. |
, , , , , | — - H_is defined for fixed B=1/T .
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spinor group )ﬂT :
' |
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Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector |0) (the
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Axiom 4 (Field operators). The theory consists of fields ' (x) (of type (k) ) which e
have components p}":(.z'} that are operator-valued tempered distributions in ‘H, and the / __________________
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Backup: Damping factors from asymptotic dynamics

* Since all observable quantities are computed using correlation functions,
which are characterised by damping factors, one can use these to gain
new insights into the properties of QF Ts when T>0

* It has been proposed [Bros, Buchholz, NPB 627 (2002)] that these quantities

are controlled by the large-time x, dynamics of the theory

@
e @
_00 | > 00
X
0
C T T T e e e e e e e e e e e e e e e e e I
Important: | Interactions with the thermal background persist, even for large x,

— Need to take this into account in definition of scattering states!




Backup: Damping factors from asymptotic dynamics

* ldea: thermal scattering states are defined by imposing an asymptotic field

condition [NPB 627 (2002)]:

“Asymptotic coupling”
In @°theory b _—

...............................................

.~ Asymptotic fields &, are assumed to satisfy

' dynamical equations, but only at large X,

“Asymptotic mass”

* Given that the thermal spectral density has the decomposition

—~—

Dg(@t,s) = Dy g(@) 6(s — m?) 4+ D (@, s)

for large X,

2. The particle damping factor 5mﬁ(u) is uniquely fixed by the

asymptotic field equation

* This means that the non-perturbative thermal effects experienced by particle

states are entirely controlled by the asymptotic dynamics!



Backup: @* theory for T > 0

* Applying the asymptotic field condition for ®* theory, the resulting damping

factors have the form [NPB 627 (2002)]:

. = e—h:\:f'\
— For A <O0: Dmﬁ(f)zw — ForA>0: |D,35(%)=——
’ H"gj‘ ’ FLO“’L'
where K is defined with r =m/T: k= TVINK(G),  K(r) = / I 1
1 Al - (2?()32\/‘(;2 -I—"J"2 e\/ltﬂbﬂ""' — 15

— The parameter K has the interpretation of a thermal

width: K—0 for T—0, or equivalently k-1 is mean-free path

Now that one has the exact dependence of D,,3(x) on the external physical
parameters, in this case T, m and A, one can use this to calculate observables

analytically



Of particular interest is the shear viscosity n, which measures the resistance of

Backup: @* theory for T > 0

a medium to sheared flow

— This quantity can be determined from the spectral function of the

spatial traceless energy-momentum tensor

. and n is recovered via the Kubo relation |7 = 5 lim

prr(Po) = }13.1_%}) f[(%l [Wij (m)aﬂij (”J)] |Qﬁ>] (p)

1 dprr

20 po—0 dpg

Using Dnp(x) for A < 0, the EMT spectral function p,__has the form:

- ]AI=0, m/T=0.1
Al=1, m/T=0.1
]AI=10, m/T=0.1

— ]I=20, m/T=0

— =20, m/T=0.5

— ]AI=20, m/T=1.0

~[3

* The presence of interactions causes resonant
peaks to appear — peaked when p, ~ k=1/4

* For A—0 the free-field result is recovered, as
expected
* The dimensionless ratio m/ T controls the

magnitude of the peaks




Backup: @* theory for T > 0

* Applying Kubo's relation, the shear viscosity n, arising from the asymptotic

states can be written [P.L., R-A. Tripolt, J. M. Pawlowski, D. H. Rischke, PRD 104, 065010 (2021)]

T3 | Ks (%, 0.00) m Ka( 3. VIV (3) VIE (%))
+VINKL (7. 0.00) + i

= 15x VN

e L R :
| for small |A|

- - . .

et s — s — — — - — — —

fffffffffffff . Magnitude of large |A|
( Global minima / i | growth controlled by m/T |
: . !

— For fixed coupling, ny/ T’ is entirely controlled by functions of m/ T




Backup: @* theory for T > 0

What about the case A > 0?7 — n, diverges!
Why? — The particle damping factor D,, ;(u) does not decay rapidly

enough at large momenta

This characteristic is related to the “bad” UV behaviour of the quartic
interaction, i.e. the triviality of ®*appears to have an impact beyond T=0!

In [PRD 104, 065010 (2021)] it was shown more generally that the finiteness of n,

is related to the existence of thermal equilibrium

e e R I R e —

This procedure demonstrates that asymptotic dynamics can be used to
explore the non-perturbative properties of QF Ts when T>0

— Can also calculate other observables, e.g. transport

coefficients, entropy density, pressure, etc.



Backup: spectral representations

* For thermal asymptotic states, the spectral function p., has the form

: 37 oC ~ ot _
' prr(po) = sinh épo d°q 2 at [ dao Cs(go, CDCﬁ( Po — 40, )
] (2m)4 3 .

.. which after applying the generalised KL representation, together with the
Kubo relation, implies

inn 2407?5/ ds/ df/ d\u\/ d|1JH?T||fU|D i, s)D 3(U,1)
' v t 3
x [4 1+ e(|@] — |9])] {‘,}—lzg (% 0,00) ‘;L 7, ( 0, oc)}

15 s — 1+ (] + 7)) o 715 s —t+ (|5 — |id])? |
10 = (LY |z, (42,19, 2= 0y | |
2(]i + )T -7 :

H\%

+
—
S
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* The model dependence of n, factorises, and is controlled by the

thermal spectral density Dg(u,s)



Backup: Euclidean spectral relations

One can use the assumptions of local QFT at finite T to put constraints on

the the structure of Euclidean correlation functions

27r7,N7_

— From the KMS condition and locality: Wg(T, T) :% Z wy (T)e P
N=—0c0

The Fourier coefficients of the Euclidean two-point function are then related

to the thermal damping factors as follows [P.L., 2201.12180]:

1 N e SR > N
wN(f) Al 2| Dm(f)e_|$| m2+wf\f_|_/ d86_|$| S+w§ch(faS)
0

"~ 4nl7]

— The continuous component D (x,s) is exponentially suppressed!

w,= 2nNT are the Matsubara frequencies. For N=0 this leads to:




Backup: damping factors from Euclidean data

* Using the analytic relations derived in [PRD 104, 065010 (2021)] for the shear
viscosity as a function of the damping factor, the numerically extracted

values for D, z(x) can be used to compute the shear viscosity
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obtained using chiral perturbation theory
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— Very similar qualitative features!
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[R. Lang, N. Kaiser, W. Weise, EPJ A 48 (2012)]
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