Superfluid vortices: from dense QCD to helium-4

Laurence Yaffe University of Washington

based on work with Aleksey Cherman, Srimoyee Sen & Theodore Jacobson arxiv:1808.04827, 2007.08539 & 2112.04595

Superfluid vortices: in strong and electromagnetic matter

Laurence Yaffe University of Washington

based on work with Aleksey Cherman, Srimoyee Sen & Theodore Jacobson arxiv:1808.04827, 2007.08539 & 2112.04595

vortices

In normal fluids:

In superfluids:

Peter Engels, JILA

In superconductors:

Suderow, Guillamón, Rodrigo, Vieira, 2014

vortices

In normal fluids:

In superfluids:

In superconductors:

Suderow, Guillamón, Rodrigo, Vieira, 2014

superfluid vortices

- signatures of spontaneously broken global U(1) symmetry
- topologically stable collective excitations, $\pi_1(U(1)) = \mathbb{Z}$
- non-zero winding of order parameter, $\oint d\ell \cdot \nabla(\arg\langle\phi\rangle) = -2\pi n \in \mathbb{Z}$
- non-zero superfluid flow $\vec{v}_s = -\vec{\nabla}(\arg\langle\phi\rangle)/M$
- non-zero vorticity $\vec{\omega} \equiv \vec{\nabla} \times \vec{v}_s$

• quantized circulation,
$$\mathscr{C} = \oint d\ell \cdot \vec{v}_s = \int_{\mathscr{S}} d\Sigma \cdot \vec{\omega} = (2\pi/M)n$$

nuclear matter

- dense "confined" hadronic phase
 - \approx Fermi liquid of neutrons
 - strongly coupled dynamics
- neutron pairing & condensation

 \Rightarrow

- spontaneously broken $U(1)_B$ baryon number symmetry
- → neutral superfluid $\langle qq \rangle \neq 0 \Leftrightarrow$
- → vortex lattice in rotating neutron star interiors
- sensitively dependent on E&M, isospin breaking, ...

 \Rightarrow

 \Rightarrow

idealized hadronic matter

- pure QCD, 3 flavor $SU(3)_f$ symmetric
 - ignore electromagnetism & weak interactions
 - degenerate, stable n, p, Λ, \cdots

idealized hadronic matter

• pure QCD, 3 flavor $SU(3)_f$ symmetric

- ignore electromagnetism & weak interactions
- degenerate, stable n, p, Λ, \cdots

idealized hadronic matter

- pure QCD, 3 flavor $SU(3)_f$ symmetric
 - ignore electromagnetism & weak interactions
 - degenerate, stable n, p, Λ, \cdots
- dense "confined" hadronic phase
 - \approx Fermi liquid of hadrons
 - strongly coupled dynamics
- di-baryon condensation
 - \implies spontaneously broken $U(1)_B$ baryon number symmetry
 - ➡ neutral superfluid

high density quark matter

- asymptotic freedom ⇒ weakly coupled
- dense deconfined "CFL" phase

 \approx Fermi liquid of quarks

- quark pairing & di-quark condensation
 - "color superconductor"

high density quark matter

- asymptotic freedom ⇒ weakly coupled
- dense deconfined "CFL" phase

 \approx Fermi liquid of quarks

• quark pairing & di-quark condensation

high density quark matter

- asymptotic freedom ⇒ weakly coupled
- dense deconfined "CFL" phase

 \approx Fermi liquid of quarks

"color sur-

-----uuctor'

• spontaneously broken $U(1)_B$ baryon number symmetry

- unbroken SU(3) flavor symmetry, fully Higged $SU(3)_{color}$
- gauge symmetries cannot truly break

 $N_{\rm f} = N_{\rm c} = 3$

quark

matter

neutron star interiors?

 \Rightarrow

 \Rightarrow

quark-gluon plasma

hadron gas

nuclear

matter

 \Rightarrow

phase continuity?

- Schäfer-Wilczek conjecture, 1998:
 - identical symmetry realizations, corresponding low-lying excitations
 - no distinguishing local order parameters
- compatible vortex properties?

phase continuity?

- Schäfer-Wilczek conjecture, 1998:
 - identical symmetry realizations, corresponding low-lying excitations

No!

- no distinguishing local order parameters
- compatible vortex properties?

phase continuity?

- Schäfer-Wilczek conjecture, 1998:
 - identical symmetry realizations, corresponding low-lying excitations
 - no distinguishing local order parameters
- compatible vortex properties? No!
 - phase of Wilson loop linking vortex = "topological" order parameter

$$\mathcal{O} \equiv \lim_{r \to \infty} \arg \langle e^{\phi A} \rangle_{\text{vortex}} = \begin{cases} \pm 2\pi/3 & \text{CFL phase} \\ 0 & \text{hadronic phase} \end{cases}$$

➡ non-trivial particle-vortex braiding statistics in CFL phase

• inconsistent with smooth phase continuity

3D Abelian-Higgs model

$$S = \int d^3x \left[\frac{1}{4e^2} F_{\mu\nu}^2 + |D_{\mu}\phi_{+}|^2 + |D_{\mu}\phi_{-}|^2 + m_c^2 \left(|\phi_{+}|^2 + |\phi_{-}|^2 \right) + |\partial_{\mu}\phi_{0}|^2 + m_0^2 |\phi_{0}|^2 \right]$$
$$- \epsilon \left(\phi_{+}\phi_{-}\phi_{0} + \text{h.c.} \right) + \lambda_c \left(|\phi_{+}|^4 + |\phi_{-}|^4 \right) + \lambda_0 |\phi_{0}|^4$$
$$+ g_c \left(|\phi_{+}|^6 + |\phi_{-}|^6 \right) + g_0 |\phi_{0}|^6 + \dots + V_m(\sigma) \right].$$

- 3D U(1) gauge theory \Rightarrow monopole-driven confinement
- $\phi_{\pm} \approx$ diquark condensates, $\phi_0 \approx$ dibaryon interpolating field
- single $U(1)_G$ global symmetry \approx baryon number symmetry

3D Abelian-Higgs model

$$S = \int d^3x \left[\frac{1}{4e^2} F_{\mu\nu}^2 + |D_{\mu}\phi_{+}|^2 + |D_{\mu}\phi_{-}|^2 + m_c^2 \left(|\phi_{+}|^2 + |\phi_{-}|^2 \right) + |\partial_{\mu}\phi_{0}|^2 + m_0^2 |\phi_{0}|^2 \right]$$
$$- \epsilon \left(\phi_{+}\phi_{-}\phi_{0} + \text{h.c.} \right) + \lambda_c \left(|\phi_{+}|^4 + |\phi_{-}|^4 \right) + \lambda_0 |\phi_{0}|^4$$
$$+ g_c \left(|\phi_{+}|^6 + |\phi_{-}|^6 \right) + g_0 |\phi_{0}|^6 + \dots + V_m(\sigma) \right].$$

- 3D U(1) gauge theory \Rightarrow monopole-driven confinement
- $\phi_{\pm} \approx$ diquark condensates, $\phi_0 \approx$ dibaryon interpolating field
- single $U(1)_G$ global symmetry \approx baryon number symmetry

3D Abelian-Higgs model

$$S = \int d^3x \left[\frac{1}{4e^2} F_{\mu\nu}^2 + |D_{\mu}\phi_{+}|^2 + |D_{\mu}\phi_{-}|^2 + m_c^2 \left(|\phi_{+}|^2 + |\phi_{-}|^2 \right) + |\partial_{\mu}\phi_{0}|^2 + m_0^2 |\phi_{0}|^2 \right]$$
$$- \epsilon \left(\phi_{+}\phi_{-}\phi_{0} + \text{h.c.} \right) + \lambda_c \left(|\phi_{+}|^4 + |\phi_{-}|^4 \right) + \lambda_0 |\phi_{0}|^4$$
$$+ g_c \left(|\phi_{+}|^6 + |\phi_{-}|^6 \right) + g_0 |\phi_{0}|^6 + \dots + V_m(\sigma) \right].$$

- 3D U(1) gauge theory \Rightarrow monopole-driven confinement
- $\phi_{\pm} \approx$ diquark condensates, $\phi_0 \approx$ dibaryon interpolating field
- single $U(1)_G$ global symmetry \approx baryon number symmetry

atomic superfluids

- superfluidity due to Bose-condensed neutral spinless atoms
- can vortices carry non-zero magnetic flux $\Phi_{\rm B} \equiv \left\langle \oint d\ell \cdot A \right\rangle_{\rm vortex}$?
 - no symmetry requires Φ_B to vanish
 - long distance EFT: neutral condensate + E&M, $S = S_{\phi} + S_{\text{EM}} + S_{\phi, \text{EM}}$

$$S_{\phi} = \int dt \, d^{3}x \left[\phi^{\dagger} \left(i\partial_{t} + \mu + \frac{\nabla^{2}}{2M} \right) \phi - \frac{f_{4} \, a}{M} |\phi|^{4} + \cdots \right]$$

$$S_{\rm EM} = \frac{1}{2} \int dt \, d^{3}x \, \left(\mathbf{E}^{2} - c^{2}\mathbf{B}^{2} + \cdots \right)$$

$$M = \text{atomic mass, } Z = \text{nuclear charge}$$

$$a = \text{atomic charge radius}$$

$$n = \phi^{\dagger}\phi = \text{atom density}$$

$$\mathbf{j} = \frac{i}{2M} ((\nabla \phi^{\dagger})\phi - \phi^{\dagger} \nabla \phi) = \text{atom number flux}$$

$$\rho = \nabla n = \text{density gradient}$$

$$\omega = \nabla \times \mathbf{j} = \text{vorticity}$$

 $c_E, c_M \approx$ dielectric, diamagnetic susceptibilities: $\epsilon/\epsilon_0 = 1 + c_E a^3 \bar{n}, \mu_0/\mu = 1 + c_M (e^2/c)^2 a^3 \bar{n}$

atomic superfluids

- superfluidity due to Bose-condensed neutral spinless atoms
- can vortices carry non-zero magnetic flux $\Phi_{\rm B} \equiv \left\langle \oint d\ell \cdot A \right\rangle_{\rm vortex}$?
 - no symmetry requires Φ_B to vanish
 - long distance EFT: neutral condensate + E&M, $S = S_{\phi} + S_{\text{EM}} + S_{\phi, \text{EM}}$

$$S_{\phi} = \int dt \, d^{3}x \left[\phi^{\dagger} \left(i\partial_{t} + \mu + \frac{\nabla^{2}}{2M} \right) \phi - \frac{f_{4} \, a}{M} \, |\phi|^{4} + \cdots \right]$$

$$S_{\rm EM} = \frac{1}{2} \int dt \, d^{3}x \, \left(\mathbf{E}^{2} - c^{2}\mathbf{B}^{2} + \cdots \right)$$

$$M = \text{atomic mass, } Z = \text{nuclear charge}$$

$$a = \text{atomic charge radius}$$

$$n = \phi^{\dagger}\phi = \text{atom density}$$

$$\mathbf{j} = \frac{i}{2M} ((\nabla \phi^{\dagger})\phi - \phi^{\dagger}\nabla \phi) = \text{atom number flux}$$

$$\rho = \nabla n = \text{density gradient}$$

$$\omega = \nabla \times \mathbf{j} = \text{vorticity}$$

 $c_E, c_M \approx$ dielectric, diamagnetic susceptibilities: $\epsilon/\epsilon_0 = 1 + c_E a^3 \bar{n}, \mu_0/\mu = 1 + c_M (e^2/c)^2 a^3 \bar{n}$

atomic superfluids

- superfluidity due to Bose-condensed neutral spinless atoms
- can vortices carry non-zero magnetic flux $\Phi_{\rm B} \equiv \left\langle \oint d\ell \cdot A \right\rangle_{\rm vortex}$?
 - no symmetry requires Φ_B to vanish
 - long distance EFT: neutral condensate + E&M, $S = S_{\phi} + S_{\text{EM}} + S_{\phi, \text{EM}}$

$$S_{\phi} = \int dt \, d^{3}x \left[\phi^{\dagger} \left(i\partial_{t} + \mu + \frac{\nabla^{2}}{2M} \right) \phi - \frac{f_{4} \, a}{M} |\phi|^{4} + \cdots \right]$$

$$S_{\rm EM} = \frac{1}{2} \int dt \, d^{3}x \, \left(\mathbf{E}^{2} - c^{2}\mathbf{B}^{2} + \cdots \right)$$

$$M = \text{atomic mass, } Z = \text{nuclear charge}$$

$$a = \text{atomic charge radius}$$

$$n = \phi^{\dagger}\phi = \text{atom density}$$

$$\mathbf{j} = \frac{i}{2M} ((\nabla \phi^{\dagger})\phi - \phi^{\dagger} \nabla \phi) = \text{atom number flux}$$

$$\rho = \nabla n = \text{density gradient}$$

$$\omega = \nabla \times \mathbf{j} = \text{vorticity}$$

 $c_E, c_M \approx$ dielectric, diamagnetic suscecptibilities: $\epsilon/\epsilon_0 = 1 + c_E a^3 \bar{n}, \mu_0/\mu = 1 + c_M (e^2/c)^2 a^3 \bar{n}$ b = dimensionless O(1) coefficient = Z/6 for low density

vortex magnetic effect

- $b \neq 0 \Rightarrow$ vorticity sources magnetic flux
- underlying physics: density gradient induced polarization
 - neutral atoms: electrostatic potential \propto particle density

•
$$\rho(\mathbf{r}) = -\nabla^2 (\frac{Zea^2}{6}f(\mathbf{r})), \ f(\mathbf{r}) \approx \text{smeared } \delta^3(\mathbf{r}), \ \text{so } \tilde{\rho}(\mathbf{k}) = \frac{Zea^2}{6}\mathbf{k}^2 + O(\mathbf{k}^4)$$

•
$$\Phi(\mathbf{x}) = (-\nabla^2)^{-1} \rho / \epsilon_0 = \frac{Zea^2}{6\epsilon_0} \sum_i f(\mathbf{x} - \mathbf{x}_i) \approx \frac{Zea^2}{6\epsilon_0} n(\mathbf{x})$$
 A.M. Kosevich, 2005

• density gradient \Rightarrow electric polarization $\mathbf{P} = \frac{1}{6} Zea^2 \nabla n$

- rotating polarization \Rightarrow magnetization $M = P \times v$
- superfluid vortex: $\nabla n \propto \hat{r}$, $\mathbf{v}_s = (\hbar/M) \hat{\theta}/r$, $\mathbf{M} \propto \hat{z}$

• magnetic flux $\Phi_B = \mu_0 \int d\Sigma \cdot \mathbf{M} = \frac{\pi}{3} \mu_0 \hbar Z e a^2 n / M = \frac{2}{3} Z \alpha \lambda_C n a^2 \Phi_0$

 $\Phi_0 = \pi \hbar / e$ = superconducting flux quantum

observability?

$$\frac{\Phi_B}{\Phi_0} = 8\pi\alpha^2 b n a^2 a_{\rm B} \frac{m_e}{M} = 7 \times 10^{-7} \frac{b}{A} \left(\frac{a_{\rm B}}{a}\right) n a^3 \qquad \text{bosonic atoms,}$$
atomic number A

- largest effect in dense superfluid, at limit of EFT validity
- superfluid helium:
 - helium charge radius $a \approx a_{\rm B}$, diluteness parameter $na^3 \approx 0.0034$

$$\frac{\Phi_B}{\Phi_0} \approx 1 \times 10^{-10}$$

- potentially observable:
 - quantum-limited SQUID noise ~ $45 \times 10^{-9} \Phi_0 / \sqrt{Hz}$

conclusions

• vortices, gauge holonomies, effective field theory, macroscopic electrodynamics, dense QCD, cold atoms: combining old ingredients can make interesting new stories...

The end