The limits of the strong CP problem

Carlos Tamarit, Technische Universität München

Phys.Lett.B 822 (2021) 136616 2001.07152 [hep-th]

in collaboration with

Wen-Yuan Ai King's College London

> Björn Garbrecht TUM

Juan S. Cruz CP³-Origins

The aim:

Challenge the conventional view of the strong CP problem by showing that a careful **infinite 4d volume** limit implies that **QCD does not violate CP** regardless of the value of the θ **angle**

The plan:

Fundamentals of the strong CP problem

Fermion correlators from cluster decomposition and the index theorem

Fundamentals of the strong CP problem

The QCD angle from the Lagrangian

$$S_{\text{QCD}} = \int \mathrm{d}^4 x \left[-\frac{1}{4g^2} F^a_{\mu\nu} F^a_{\mu\nu} + \frac{g^2 \theta}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} F^a_{\mu\nu} F^a_{\rho\sigma} + \sum_{i=1}^{N_f} \overline{\psi}_i \left(i\gamma^\mu D_\mu - m_i e^{i\alpha_i \gamma_5} \right) \psi_i \right]$$

 θ -term is a total derivative and thus corresponds to a boundary term

it can never contribute in perturbation theory:

effects of θ are nonperturbative

 S_{θ} is **CP-odd!**

$$CP: A_0 \to -A_0, \quad A_i \to A_i \quad \Rightarrow \quad S_\theta \to -S_\theta$$

Yet no CP violation has been observed in the strong interactions: Strong CP problem $|d_n| < 1.8 \times 10^{-26} e \cdot cm$ [nEDM collaboration 2020]

What do we need for CP violation?

Need interfering contributions to amplitudes with misaligned phases

$$|\mathcal{M}_{A\to B}|^2 - |\mathcal{M}_{\bar{A}\to\bar{B}}|^2 = 4\mathrm{Im}(c_0^*c_1)\mathrm{Im}(\mathcal{M}_0\mathcal{M}_1^*)$$

CP violation needs complex phases with $c_0 \neq c_1$

Phases of **perturbative** contributions fixed by α_i

 θ naively expected to give additional phases $\exp(-S_{\rm QCD}^{\rm E}) \propto \exp(i\Delta n\theta)$

We need to compute correlators and see if they depend on both types of CP-odd phases (α_i and θ) or not

Towards correlators: vacuum path integral

$$\int_{\phi_i,\phi_f,T} \left(\prod \mathcal{D}\phi \right) \, e^{\mathbf{i}S_T} = \langle \phi_f | e^{-\mathbf{i}HT} | \phi_i \rangle = \sum_n e^{-\mathbf{i}E_nT} \langle \phi_f | n \rangle \langle n | \phi_i \rangle$$

To get a vacuum transition amplitude we can take the infinite T limit,

$$Z = \lim_{T \to \infty e^{-i0_+}} \int_T \left(\prod \mathcal{D}\phi \right) e^{\mathbf{i}S_T} \sim \lim_{T \to \infty e^{-i0_+}} \langle 0|e^{-\mathbf{i}HT}|0\rangle$$

To recover the vacuum amplitude for **finite** *T*, one would **need to know the wave functional of the vacuum**

$$\langle 0|e^{-iHT}|0\rangle = \int [\mathcal{D}\phi_f]_{T/2} [\mathcal{D}\phi_i]_{-T/2} \langle 0|\phi_f\rangle \langle \phi_f|e^{-iHT}|\phi_i\rangle \langle \phi_i|0\rangle$$
$$= \int [\mathcal{D}\phi_f]_{T/2} [\mathcal{D}\phi_i]_{-T/2} \langle 0|\phi_f\rangle \langle \phi_i|0\rangle \int_{\phi_i,\phi_f,T} \left(\prod \mathcal{D}\phi\right) e^{iS}$$

To ensure projection into vacuum, we use the Euclidean path integral for infinite VT

Carlos Tamarit

Finite action constraints and topology

Euclidean path integral receives contributions from fluctuations around **finite action saddles**

In infinite spacetime, gauge fields at saddles must be pure gauge transf. at ∞

Fields fall into homotopy classes with integer topological charge Δn

Atiyah-Singer's index theorem:

$$\Delta n = #(\text{Right-handed zero modes of } D) - #(\text{Left-handed zero modes of } D)$$

$$D \psi_R = 0$$
 $D \psi_R$

The θ -term is related to the topological charge! $-S_{\theta}^{E} = i\theta\Delta n$

The heta-term is only guaranteed to be $\,\propto\,$ to an integer in an infinite spacetime

Is θ physical?

 θ cannot be physical as it changes under **chiral field redefinitions** due to **anomaly**:

$$\partial_{\mu} \langle \sum_{j} \bar{\psi}_{j} \gamma^{\mu} \gamma_{5} \psi_{j} \rangle = 2N_{F} \frac{g^{2}}{64\pi^{2}} \epsilon^{\mu\nu\rho\sigma} F^{a}_{\mu\nu} F^{a}_{\rho\sigma} + 2\sum_{j} \langle \bar{\psi} \gamma_{5} m_{j} e^{i\alpha_{j}\gamma_{5}} \psi \rangle$$

Spurion symmetry: *Z* invariant under chiral transformations plus "spurion" transf:

$$\theta \to \theta + 2N_f \beta, \quad \mathfrak{m}_j = m_j e^{i\alpha_j} \to e^{-2i\beta} \mathfrak{m}_j$$

A physical combination is $\bar{\theta} \equiv \theta + \alpha, \quad \alpha = \sum_j \arg(j)$

Strong CP problem: $\bar{\theta} < 10^{-10}$

Nonperturbative effects in QCD

Integrating anomaly eq: $\Delta Q_5 = 2N_f \Delta n + \text{mass corrections}$

There are interactions that violate chiral charge by $2N_f\Delta n$ units

Can be recovered from nonperturbative contributions to the path integral around saddle points with nonzero Δn , e.g. instantons ['t Hooft]

Nonperturbative effects in QCD

Fermionic Green's functions in instanton backgrounds can be captured by effective operators

$$\mathcal{L}_{\text{eff}} \supset -\sum_{j} m_{j} \bar{\psi}_{j} (e^{-i\alpha_{j}} P_{L} + e^{i\alpha_{j}} P_{R}) \psi_{j} - \Gamma_{N_{f}} e^{i\xi} \prod_{j=1}^{N_{f}} (\bar{\psi}_{j} P_{L} \psi_{j}) - \Gamma_{N_{f}} e^{-i\xi} \prod_{j=1}^{N_{f}} (\bar{\psi}_{j} P_{R} \psi_{j})$$

Carlos Tamarit

Nonperturbative effects in QCD

$$\mathcal{L}_{\text{eff}} \supset -\sum_{j} m_{j} \bar{\psi}_{j} (e^{-i\alpha_{j}} P_{L} + e^{i\alpha_{j}} P_{R}) \psi_{j} - \Gamma_{N_{f}} e^{i\xi} \prod_{j=1}^{N_{f}} (\bar{\psi}_{j} P_{L} \psi_{j}) - \Gamma_{N_{f}} e^{-i\xi} \prod_{j=1}^{N_{f}} (\bar{\psi}_{j} P_{R} \psi_{j})$$

$$2 \text{ options compatible with spurion chiral symmetry:}$$

$$\xi = \theta \qquad \text{CP violation (phases not aligned)}$$

$$\xi = -\alpha \qquad \text{No CP violation (all phases aligned, can be removed)}$$

How to resolve the ambiguity?

Must match effective `t Hooft vertices with QCD computations

Only real computation that we know of is **`t Hooft'**s, using **dilute instanton gas** and yielding $\xi = \theta$ (CP violation)

We have recomputed Green's functions in the dilute instanton gas, in Euclidean and Minkowski spacetime, and found $\xi = -\alpha$ (no CP violation)

We also have a computation which does not rely on instantons, presented next

Fermion correlators from cluster decomposition and the index theorem

Strategy

We want a derivation that does not rely on instantons

The aim is to constrain the functional dependence of the partition functions $Z_{\Delta n}$ on VT, Δn , $\mathfrak{m}_j = m_j e^{i\alpha_j}$

Fermion masses can be understood as sources for the integrated fermion correlators [Leutweyler & Smilga]

$$\mathcal{L} \supset \sum_{j} \left(\bar{\psi}_{j}(\mathfrak{m}_{j}^{*}P_{L} + \mathfrak{m}_{j}P_{R})\psi_{j} \right)$$

These correlators should be sensitive to global CP-violating phases

$$\frac{\partial}{\partial \mathfrak{m}_i} Z_{\Delta n} = -\int d^4 x \, \langle \bar{\psi}_i P_R \psi_i \rangle_{\nu}, \qquad \frac{\partial}{\partial \mathfrak{m}_i^*} Z_{\Delta n} = -\int d^4 x \, \langle \bar{\psi}_i P_L \psi_i \rangle_{\nu}.$$

Cluster decomposition

Using Lagrangian without the θ angle, one can write expectation values by weighing over path integrals over the different topological classes

4d volume
$$\langle \mathcal{O} \rangle_{\Omega} = \frac{\sum_{\Delta n = -\infty}^{\infty} f(\Delta n) \int_{\Delta n} \mathcal{D}\phi \,\mathcal{O} \,\mathrm{e}^{-S_{\Omega}[\phi]}}{\sum_{\Delta n = -\infty}^{\infty} f(\Delta n) \int_{\Delta n} \mathcal{D}\phi \,\mathrm{e}^{-S_{\Omega}[\phi]}}$$

For a **local operator** \mathcal{O}_1 with support in a spacetime volume Ω_1

$$\langle \mathcal{O}_1 \rangle_{\Omega} = \frac{\sum_{\Delta n_1 = -\infty}^{\infty} \sum_{\Delta n_2 = -\infty}^{\infty} f(\Delta n_1 + \Delta n_2) \int_{\Delta n_1} \mathcal{D}\phi \, \mathcal{O}_1 \, \mathrm{e}^{-S_{\Omega_1}[\phi]} \int_{\Delta n_2} \mathcal{D}\phi \, \mathrm{e}^{-S_{\Omega_2}[\phi]}}{\sum_{\Delta n_1 = -\infty}^{\infty} \sum_{\Delta n_2 = -\infty}^{\infty} f(\Delta n_1 + \Delta n_2) \int_{\Delta n_1} \mathcal{D}\phi \, \mathrm{e}^{-S_{\Omega_1}[\phi]} \int_{\Delta n_2} \mathcal{D}\phi \, \mathrm{e}^{-S_{\Omega_2}[\phi]}}$$

If **physics** is **local**, fluctuations in Ω_2 must factor away (cluster decomposition)

Cluster decomposition

Factorization achieved if

$$f(\Delta n_1 + \Delta n_2) = f(\Delta n_1)f(\Delta n_2) \Rightarrow f(\Delta n) = e^{i\Delta n\theta}$$

Usual θ **term recovered!** [Weinberg]

Can we use factorization to constrain the partition functions, and the phases of fermion correlators?

Taking the clustering argument further

The previous argumentation relied on

$$Z(\Omega) = \sum_{\Delta n} e^{i\Delta n\theta} \tilde{Z}_{\Delta n}(\Omega) \qquad \tilde{Z}_{\Delta n}(\Omega = \Omega_1 + \Omega_2) = \sum_{\Delta n_1 = -\infty}^{\infty} \tilde{Z}_{\Delta n_1}(\Omega_1) \tilde{Z}_{\Delta n - \Delta n_1}(\Omega_2)$$

00

We further assume that complex phases in $Z_{\Delta n}$ fixed as in one-loop determinants

$$\prod_{j} \det(\not D + m_j e^{i\alpha_j} P_R + m_j e^{-i\alpha_j} P_L)$$

- phases of nonzero modes ($D\psi_n \neq 0$) cancel (related by parity)
- global phase determined by fermion zero modes index theorem!

Taking the clustering argument further

$$\tilde{Z}_{\Delta n}(\Omega) = e^{i\Delta n\alpha} g_{\Delta n}(\Omega) \Rightarrow g_{\Delta n}(\Omega_1 + \Omega_2) = \sum_{\Delta n_1 = -\infty}^{\infty} g_{\Delta n_1}(\Omega_1) g_{\Delta n - \Delta n_1}(\Omega_2)$$
Real

Parity changes sign of Δn and α . This and solving the relations for $\ \Omega=0$ motivates the Ansatz

$$g_{\Delta n}(\Omega) = \Omega^{|\Delta n|} f_{|\Delta n|}(\Omega^2), \quad f_{|\Delta n|}(0) \neq 0.$$

Assuming **analiticity** in Ω there is a **unique solution** with free parameter β !

$$f_{\Delta n}(\Omega) = I_{\Delta n}(2\beta\Omega)$$

 $Z_{\Delta n} = e^{i\Delta n(\theta + \alpha)} I_{\Delta n}(2\beta\Omega) \qquad \text{c.f. [Leutweyler & Smilga]}$

Mass dependence and correlators

As the $g_{\Delta n}$ are real:

$$Z_{\Delta n}(\Omega) = e^{i\Delta n(\theta + \alpha)} I_{\Delta n}(2\beta(\mathfrak{m}_k \mathfrak{m}_k^*) \Omega) =$$
$$= e^{i\Delta n(\theta - i/2\sum_j \log(\mathfrak{m}_j/\mathfrak{m}_j^*))} I_{\Delta n}(2\beta(\mathfrak{m}_k \mathfrak{m}_k^*) \Omega)$$

Taking derivatives with respect to m, m^* gives averaged integrated correlators

Spurion chiral charge +2

$$\frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i P_R \psi_i \rangle_{\Delta n} = -e^{i\Delta n(\theta + \bar{\alpha})} \left(-\frac{\beta}{2\mathfrak{m}_i} (I_{\Delta n+1}(2\beta\Omega) - I_{\Delta n-1}(2\beta\Omega)) + \mathfrak{m}_i^* (I_{\Delta n+1}(2\beta\Omega) + I_{\Delta n-1}(2\beta\Omega)) \frac{\partial}{\partial(\mathfrak{m}_i \mathfrak{m}_i^*)} \beta(\mathfrak{m}_k \mathfrak{m}_k^*) \right)$$

Summing over topological sectors

$$\frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i P_R \psi_i \rangle = \lim_{N \to \infty} \lim_{VT \to \infty} \frac{\sum_{\Delta n = -N}^N \frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i P_R \psi_i \rangle_{\Delta n}}{\sum_{\Delta m = -N}^N Z_{\Delta m}} = 2\mathfrak{m}_i^* \, \partial_{\mathfrak{m}_i \mathfrak{m}_i^*} \beta(\mathfrak{m}_k \mathfrak{m}_k^*),$$

$$\frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i P_L \psi_i \rangle = \lim_{N \to \infty} \lim_{VT \to \infty} \frac{\sum_{\Delta n = -N}^N \frac{1}{VT} \int d^4x \, \langle \bar{\psi}_i P_L \psi_i \rangle_{\Delta n}}{\sum_{\Delta m = -N}^N Z_{\Delta m}} = 2\mathfrak{m}_i \, \partial_{\mathfrak{m}_i \mathfrak{m}_i^*} \beta(\mathfrak{m}_k \mathfrak{m}_k^*).$$

Topological classification only enforced in infinite volume, which fixes ordering

$$\frac{1}{VT}\int d^4x \,\langle \bar{\psi}_i \psi_i \rangle = 2m_i e^{-i\alpha_i \gamma_5} \partial_{\mathfrak{m}_i \mathfrak{m}_i^*} \beta(\mathfrak{m}_k \mathfrak{m}_k^*) \quad \text{Only a single phase: no CP violation}$$

Summing over topological sectors

Similar results achieved using dilute instanton gas (like `t Hooft, but with a different ordering of limits)

Opposite order of limits yields traditional picture of CP-violation

QCD with an arbitrary θ does not predict CP violation, as long as the sum over topological sectors is performed at infinite volume

This **ordering of limits** is the correct one because the topological classification is only enforced for an infinite volume

Further reading in our paper

- For local observables one can recover CP-conserving expectation values from path integrals in a finite subvolume without θ dependence
- No conflict with nonzero topological susceptibility in the lattice and η ' mass

Additional material

Phase ambiguity in the chiral Lagrangian

The chiral Lagrangian at lowest order has the form

$$\mathcal{L} = f_{\pi}^{2} \text{Tr} \partial_{\mu} U \partial^{\mu} U^{\dagger} + a f_{\pi}^{3} \text{Tr} M U + b f_{\pi}^{4} \text{det} U + \text{h.c}$$
Captures t' Hooft vertices $U \sim \bar{\psi} P_{R} \psi \sim e^{i \frac{\Pi^{a} \sigma^{a}}{\sqrt{2} f_{\pi}}}$

There are again 2 options compatible with spurion chiral symmetry

$$b \propto e^{-i\theta}$$
 $b \propto e^{i\alpha} = e^{i\sum_j \arg(\mathfrak{m}_j)}$
Usual option, **assumed** by [Baluni, Crewther et al] \longrightarrow CP violation
No CP violation!

No CP violation in the chiral Lagrangian

 $\mathcal{L} = f_{\pi}^{2} \mathrm{Tr} \partial_{\mu} U \partial^{\mu} U^{\dagger} + a f_{\pi}^{3} \mathrm{Tr} M U + |b| e^{\mathrm{i}\xi} f_{\pi}^{4} \mathrm{det} U + \mathrm{h.c.}$

Minimizing the potential for the pions leads to

$$\langle U \rangle = U_0 = \text{diag} \left(e^{i\varphi_u}, e^{i\varphi_d}, e^{i\varphi_s} \right) .$$
$$m_i \varphi_i = \frac{m_u m_d m_s (\xi + \alpha_u + \alpha_d + \alpha_s)}{m_u m_d + m_d m_s + m_s m_u} = \tilde{m} (\xi + \alpha_u + \alpha_d + \alpha_s) .$$

Adding field *N* containing neutron and proton, the *CP*-violating neutron-pion interactions are of the form

$$\frac{c_+\tilde{m}(\xi+\alpha_u+\alpha_d+\alpha_s)}{2f_\pi}\bar{N}\Phi N$$

(ϕ containing U, U^{\dagger} and gammas) which cancel for $\xi = -\alpha$ \rightarrow no CP violation

Baluni's CP-violating effective Lagrangian

Baluni's CP-violating Lagrangian (used by [Crewther et al]) is based on searching for field redefinitions that minimize the QCD mass term

$$\mathcal{L}_{M}(U_{R,L}) = \bar{\psi} U_{R}^{\dagger} M U_{L} \psi_{L} + \text{h.c.}, \quad U_{R,L} \in SU_{R,L}(3)$$
$$\langle 0|\delta \mathcal{L}|0\rangle = \min_{U_{R,L}} \langle 0|\mathcal{L}_{M}(U_{R,L})|0\rangle$$

However, there is an extra assumption: that the phase of the fermion condensate is aligned with $\boldsymbol{\theta}$

$$\langle \bar{\psi}_R \psi_L \rangle = \Delta e^{\mathbf{i} c \theta} \mathbb{I}$$

This assumption **does not hold** for the chiral Lagrangian with $\xi = -\alpha$ as seen in previous slide

The η ' mass

Chiral Lagrangian with alignment in the phases of mass terms and anomalous terms still predicts a **nonzero value of the** η **' mass**

$$\mathcal{L} = f_{\pi}^{2} \text{Tr} \partial_{\mu} U \partial^{\mu} U^{\dagger} + a f_{\pi}^{3} \text{Tr} M U + |b| e^{i \arg \det M} f_{\pi}^{4} \det U + \text{h.c.}$$
$$m_{\eta'}^{2} = 8|b| f_{\pi}^{2}$$

Can be seen to be **proportional** to the **topological susceptibility** over **finite volumes** of the **pure gauge theory**, in line with [Witten, Di Vecchia & Veneziano]

Classic arguments linking topological susceptibility to CP violation ([Shifman et al]) rely on analytic expansions in θ which don't apply with our limiting procedure

Z **becomes non-analytic in** θ . This possibility has been mentioned by [Witten]

the physics is of order e^{-N} , contrary to the basic assumptions of this paper, or else the physics is non-analytic as a function of θ , In the latter case, which is quite plausible, the singularities would probably be at $\theta = \pm \pi$, as Coleman found for the massive Schwinger model [10]. It is also quite plausible that θ is not really an angular variable.)

To write a formal expression for $d^2 E/d\theta^2$, let us think of the path integral formulation of the theory:

$$Z = \int dA_{\mu} \exp i \int Tr \left[-\frac{1}{4} F_{\mu\nu} + \frac{g^2 \theta}{16\pi^2 N} F_{\mu\nu} \tilde{F}_{\mu\nu} \right].$$
 (5)

Partition function and analiticity

Usual partition function is analytic in θ

$$Z_{\text{usual}} = \lim_{VT \to \infty} \lim_{N \to \infty \atop N \in N} \sum_{\Delta n = -N}^{N} Z_{\Delta n} = e^{2i\kappa_{N_f}VT\cos(\bar{\alpha} + \theta + N_f\pi)}$$

 θ -dependence of observables (giving CP violation) usually relies on θ expansion. e.g.

$$\frac{\langle \Delta n \rangle}{\Omega} = i \left(\theta - \theta_0 \right) \left. \frac{\langle \Delta n^2 \rangle}{\Omega} \right|_{\theta_0} + \mathcal{O}(\theta - \theta_0)^2$$

topological susceptibility [Shifman et al]

In our limiting procedure the former is not valid, as Z becomes nonanalytic in θ

$$Z = \lim_{N \to \infty \atop N \in N} \lim_{VT \to \infty} \sum_{\Delta n = -N} Z_{\Delta n} = I_0(2i\kappa_{N_f}VT) \lim_{N \to \infty \atop N \in N} \sum_{|\Delta n| \le N} e^{i\Delta n(\bar{\alpha} + \theta + N_f\pi)}$$

 θ drops out from observables, there is no CP violation

Finite volumes in an infinite spacetime

Even in an infinite spacetime, we can express expectation values of local observables in terms over **path integration over finite volume**.

This can help make **contact with lattice computations**

Assume local operator \mathcal{O}_1 with support in finite spacetime volume Ω_1

$$\langle \mathcal{O}_1 \rangle_{\Omega} = \frac{\sum_{\Delta n = -\infty}^{\infty} f(\Delta n) \int_{\Delta n} \mathcal{D}\phi \,\mathcal{O}_1 \,\mathrm{e}^{-S_{\Omega}[\phi]}}{\sum_{\Delta n = -\infty}^{\infty} f(\Delta n) \int_{\Delta n} \mathcal{D}\phi \,\mathrm{e}^{-S_{\Omega}[\phi]}}$$
$$= \frac{\sum_{\Delta n = -\infty}^{\infty} \sum_{\Delta n_1 = -\infty}^{\infty} f(\Delta n) \int_{\Delta n_1} \mathcal{D}\phi \,\mathcal{O}_1 \,\mathrm{e}^{-S_{\Omega_1}[\phi]} \int_{\Delta n_2 = \Delta n - \Delta n_1} \mathcal{D}\phi \,\mathrm{e}^{-S_{\Omega_2}[\phi]}}{\sum_{\Delta n = -\infty}^{\infty} \sum_{\Delta n_1 = -\infty}^{\infty} f(\Delta n) \int_{\Delta n_1} \mathcal{D}\phi \,\mathrm{e}^{-S_{\Omega_1}[\phi]} \int_{\Delta n_2 = \Delta n - \Delta n_1} \mathcal{D}\phi \,\mathrm{e}^{-S_{\Omega_2}[\phi]}}.$$

Finite volumes in an infinite spacetime

Path integrations over Ω_2 give just the **partition functions** we calculated before

In the **infinite volume** limit the **Bessel functions tend to common value** and dependence on Δn factorizes out and cancels:

$$\langle \mathcal{O}_1 \rangle_{\Omega} = \frac{\sum_{\Delta n_1 = -\infty \Delta n_1}^{\infty} \mathcal{D}\phi (-1)^{-N_f \Delta n_1} e^{-i\alpha \Delta n_1} \mathcal{O}_1 e^{-S_{\Omega_1}[\phi]}}{\sum_{\Delta n_1 = -\infty \Delta n_1}^{\infty} \mathcal{D}\phi (-1)^{-N_f \Delta n_1} e^{-i\alpha \Delta n_1} e^{-S_{\Omega_1}[\phi]}}$$

We recover a path integration over a finite volume, without θ dependence Extra phases precisely cancel those from fermion determinants in Ω_1

This **removes interferences** between different **topological sectors**

The QCD angle from the vacuum state

Hamiltonian is zero for pure gauge transformations, with integer n_{cs} : Expect degenerate pre-vacua $|n_{CS}\rangle \equiv |n\rangle$

The true vacuum $|\omega\rangle$ is a linear combination of prevacua

$$\omega\rangle = \sum_{n} f(n)|n\rangle$$

Demanding invariance up to a phase under gauge transformations in the Δn class

$$U_{\Delta n}|\omega\rangle = \sum_{n} f(n)|n + \Delta n\rangle = e^{i\Delta n\theta}|\omega\rangle \Rightarrow f(n) = e^{-in\theta}$$
$$Z(\theta) = \langle \omega|e^{-HT}|\omega\rangle = \sum_{m} \sum_{n} \langle m|e^{-HT}e^{i\theta(m-n)}|n\rangle = \mathcal{N}\sum_{\Delta n} \langle n + \Delta n|e^{-HT}e^{i\theta\Delta n}|n\rangle$$
$$= \mathcal{N}\sum_{\Delta n} \int_{\Delta n} \mathcal{D}\phi \, e^{-S_{\theta} + \dots}$$

Can one use the θ vacuum at finite volume?

Bloch wave function in QM:

vs θ vacuum

Too naive! Have to use path integral in infinite 4D volume to project into vacuum