Tackling the gravitational wave – collider inverse problem

Tuomas V. I. Tenkanen

In collaboration with:
L. S. Friedrich, M. J. Ramsey-Musolf and V. Q. Tran
based on [2203.05889]
(and build upon [2005.11332], [2009.10080] and [2104.04399])

NORDITA, KTH and Stockholm University T.D. Lee Institute/Shanghai Jiao Tong University

SEWM 2022 22.6.2022

E-mail: tuomas.tenkanen@su.se

1/12

1st order cosmological phase transition (fig. from David J. Weir)

GW background – collider inverse problem \to a pipeline from collider phenomenology to cosmological gravitational wave production. And vice versa? Aim: pushing state-of-the-art description.

Pipeline: EWPT in BSM theories.

How do I resum thee? (weak coupling $g: \mathcal{O}(g^n)$)

- ▶ "4d approach" or 1-loop V_{eff} with daisy resummation: (a)-(b)-(c): $\mathcal{O}(g^3)$
- ▶ Perturbative (dimensionally reduced) 3d EFT approach: (a)-(d)-(e)-(f): $\mathcal{O}(g^4)$ (2-loop) or $\mathcal{O}(g^5)$ (3-loop).
- Non-perturbative 3d EFT approach: (a)-(d)-(g)-(h)-(i): O(g⁶) and captures non-perturbative IR physics.

Does the accuracy matter..?

... short answer: YES! \rightarrow three orders-of-magnitude uncertainty in the peak gravitational wave amplitude! (cf. [1904.01329], [2009.10080], [2104.04399])

Convergence in g is slow at high-T: need higher loop orders.

Generic models: 3d EFT in Mathematica within seconds

DRalgo: a package for effective field theory approach for thermal phase transitions

[2205.08815]: https://github.com/DR-algo/DRalgo

Bubble nucleation rate computation still needs to be improved

Recent developments in [2104.11804], [2108.04377], [2112.05472], [2112.08912].

Also the bubble wall speed should be derived as a function of BSM model parameters.

SM + triplet scalar Σ^a : collider phenomenology

- ▶ Portal to Higgs by coupling a_2 : $\mathcal{L}_{SM} + \mathcal{L}_{\Sigma} + \frac{1}{2}a_2H^{\dagger}H(\Sigma^a\Sigma^a)$
- ▶ Possible pheno targets for future colliders: triplet mass, deviation to Higgs to digamma decay rate, branching fraction $\Sigma^0 \to ZZ$.

Envision a future measurement:

$$m_{\Sigma} = (\ldots) \pm (\ldots)$$
 $\delta_{\gamma\gamma} = (\ldots) \pm (\ldots)$ $BR(\Sigma^0 \to ZZ) = (\ldots) \pm (\ldots)$

Relate to a_2 (usual T = 0 QFT).

pheno $\rightarrow (m_{\Sigma}, a_2) \rightarrow (T_*, \alpha, \beta/H_*, \nu_w) \rightarrow \text{LISA SNR}$

Key points

- Need to go beyond 1-loop approximations in perturbation theory.
- ➤ A first order transition during the second step could generate a signal accessible to LISA generation detectors.
- Possible GW signal displays a strong sensitivity to the portal coupling between the new scalar and the Higgs boson.

Summary

- ▶ Proof of concept for collider GW interplay: combination of direct and indirect measurements of the new scalar properties, in combination with the presence or absence of a GW detection, could test the model and identify the values of the model parameters.
 - \rightarrow future work still needed, for comprehensive statistical analysis!
- ► Also future: fully non-perturbative study still needed.
- ▶ Dimensional reduction and use of 3d EFT is systematic way to organise thermal resummations and attack the IR problem and slow convergence at high-T.

11 / 12

Thanks!

