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Why care about phase transitions?
First-order phase transition =⇒ Electroweak Baryogenesis?

Baryon asymmetry
nB−nB̄

nγ
≈ 6×10−10︸ ︷︷ ︸

Observation

� 10−20︸ ︷︷ ︸
Prediction

Gravitational Waves =⇒ Need accurate calculations

A classic tale about a hot topic

Effective Potential : L∼ T d
dT VA−T d

dT VB → α

Nucleation Rate : Γ∼ Ae−S3/T → β

}
ΩGW
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Effective field-theory to the rescue: Dimensional reduction

Phase transitions in a nutshell

Effective mass:
m2

eff = (m2 + aT 2︸︷︷︸
Thermal Mass

)�m2

RG =⇒ µ
d

d log µ
m2

eff ≈m2
eff

Fine-tuning =⇒ bT 2︸︷︷︸
2-loop Mass

≈m2
eff

Logarithms =⇒ logT 2/m2
eff� 1

Extreme uncertainties for ΩGW =⇒ Can we trust theoretical calculations?

Solution: Integrate out E ∼ T modes (9508379,2104.04399)
No more large logs: logT 2/m2

eff→ logT 2/µ
2︸ ︷︷ ︸

Match at µ∼T

+ log µ
2/m2

eff︸ ︷︷ ︸
RG-evolution in the EFT

Two-loop thermal masses→ From matching
Thermally resummed couplings→ From matching
Simpler calculations V1-Loop→−m3

eff, V2-Loop→ log µ2/m2
eff + m2

eff
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Get the high-temperature EFT in Mathematica within seconds!
https://github.com/DR-algo/DRalgo (2205.08815)

DRalgo : Automatic matching to two loops
→ Two-loop thermal masses
→ Two-loop Debye masses
→ One-loop thermal couplings
→ Two-loop effective potential
→ Beta functions at T = 0
→ Beta functions in the effective theory
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https://github.com/DR-algo/DRalgo


How does it work? (see Tuomas’ talk)

Calculate effective couplings → λeff(T ),m2
eff(T ), . . .

Calculate 3d effective potential → V 3d
eff (φ)→ Tc

Calculate 3d nucleation rate → Γ∼ e−S3 → TN

Calculate latent heat → α ∝
d

dT V 3d
eff = dλeff

dT
dV 3d

eff
dλeff

+ . . .

Calculate phase-transition duration → β ∝
d

dT S3 = dλeff
dT

dS3
dλeff

+ . . .


ΩGW
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Radiative barriers in the High-T EFT (2205.0724)
Barrier from vector bosons

Vtree(φ) = 1
2m2

3φ2 + 1
4λ3φ4→ VLO(φ) = 1

2m2
3φ2− 1

16π
g3

3φ3 + 1
4λ3φ4

m2
A ∼ g2

3 , mH ∼ λ3 =⇒ Only consistent if m2
H

m2
A
∼ x � 1

The expansion is in powers of x—From lattice: continuous transition if x & 0.1
Integrating out vectors bosons at 2-loops give VNLO

Scalar-loop contribution appear first at NNLO
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Strict perturbative expansion

Rewriting the potential with dimensionless variables

VLO(φ) = 1
2yφ2− 1

16π
φ3 + 1

4xφ4, x = λ3
g2

3
, y =

m2
3

g4
3

Symmetric minima: φs = 0 Broken minima φb ∼ x−1 6= 0

How do we consistently include higher orders?
Minima coincide when ∆V (x ,yc)≡ VLO(φb)−VLO(φs) = 0 =⇒ Critical mass yc

Consistent expansion: φb = φLO + xφNLO + . . . =⇒ Gauge invariance
Critical mass: yc = yLO + xyNLO + . . . =⇒ Exact RG-invariance at every order
Observables: d

dy ∆V (x ,yc)≡∆
〈
Φ†Φ

〉
, d

dx ∆V (x ,yc)≡∆
〈
(Φ†Φ)2〉
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Comparison with Lattice (data from 2205.07238)
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〈
Φ†Φ

〉
=

1 + 51
2 x + 13

√
2x3/2

2(8πx)2

∆
〈

(Φ†Φ)2
〉

=
1 + 51x + 14

√
2x3/2

4(8πx)4 .

Latent heat: L≈ 4×∆
〈
Φ†Φ

〉

Large corrections from NLO
NNLO correction under control
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Result for the critical mass
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Expect expansion to fail when yc ≈ 0
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Radiative corrections to the nucleation rate

Thermal escape
Γ = Γstat︸︷︷︸

Boltzmann factor

× Γdyn︸︷︷︸
Damping

Effective action: Γstat = e−Seff ∼ T 3e−SLO

Higher-order: Seff = SLO + SNLO + . . .

SNLO ∼ R3 and SLO ∼ R2

→ Trouble with large bubbles
Corrections to the bounce are important

Functional determinant
SNLO = 1

2 ∑i Tr log
[
−∇2 + M2

i [φB]
]
→ Calculate numerically

Straightforward to calculate in the effective theory

Recent lattice results for a radiative barrier in 2205.07238
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Example: Dimension-6 operator

V (φ) = 1
2m2

3φ2− 1
4λ3φ4 + 1

32c6φ6, y =
m2

3
λ 2

3

Seff(yN) = SLO + SNLO = 126 =⇒ Nucleation mass yN

βN/HN ∼ β̃ = d
dy Seff(yN)—Observable in the effective 3d theory
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Results for β̃ (2205.05145)

LO

NLO, x =4-1

NLO, x =6-1

NLO, x =8-1
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Sizeable radiative corrections

x = λ3
g2

3
≈ λ

g2 , c6 = T 2c6,4d

Absolute upper bound c6 . x3

NLO can change β̃ by a factor of 2
→ Corrections propagate to GWs

Calculating 1-loop corrections are not only doable, but straightforward
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Summary
The Electroweak phase transition is a hot topic
→ Uncertainties for common methods span orders of magnitude
→ High-temperature effective theory key to reduce RG-scale dependence
→ EFT construction has been automatized
→ Calculations simpler in the EFT
Strict perturbative expansions are simple and consistent
→ 3-loop corrections straightforward to include for the effective potential
→ 1-loop corrections straightforward to include for the nucleation rate

Robust methods are needed for accurate predictions
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Thank You
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Backup slides
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DRalgo example: Standard-Model with nF fermion families
Effective Couplings: Lb, Lf∼ logµ/T (matching scale µ ∼ T )

Out[ ]= gw3d2 
gw4 T (43 Lb - 8 Lf nF+ 4)

96 π2
+ gw2 T, gY3d2  gY2 T -

gY4 T (3 Lb + 40 Lf nF)

288 π2
, gs3d2 

gs4 T (33 Lb - 4 Lf nF+ 3)

48 π2
+ gs2 T,

λ1H3d 
T 24 λ1H 3 gw2 Lb + gY2 Lb - 4 Lf yt2 + (2- 3 Lb) 3 gw4 + 2 gw2 gY2 + gY4 + 256 π2 λ1H - 192 λ1H2 Lb + 48 Lf yt4

256 π2


One-loop scalar masses

Out[ ]= m23d 
1

16
T2 3 gw2 + gY2 + 8 λ1H + 4 yt2 +m2

Two-loop Debye masses

Out[ ]= μsqSU2
gw2 T2 gw2 86 Lb (2 nF+ 5) - 32 (Lf - 1) nF2 + (44- 80 Lf) nF+ 207 - 3 6 8 gs2 nF- 4 λ1H + yt2 + gY2 (4 nF- 3) + 144m2

1152 π2
,

μsqSU3
gs2 T2 4 gs2 (33 Lb (nF+ 3) + nF (-4 Lf (nF+ 3) + 4 nF+ 3) + 45) - 27 gw2 nF- 11 gY2 nF- 36 yt2

576 π2
,

μsqU1 -
gY2 T2 18 88 gs2 nF- 36 λ1H + 33 yt2 + 81 gw2 (4 nF- 3) + gY2 6 Lb (10 nF+ 3) + 800 (Lf - 1) nF2 + 60 (4 Lf + 17) nF- 45 - 1296 m2

10368 π2
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