New methods for studying the Electroweak phase transition

Andreas Ekstedt DESY

II. Institut für Theoretische Physik

Strong and Electroweak Matter 2022, June 22 Talk based on 2205.08815 , 2205.07241, and 2205.05145

Why care about phase transitions?

First-order phase transition \implies Electroweak Baryogenesis?

Gravitational Waves \implies Need accurate calculations

A classic tale about a hot topic

Effective Potential : $L \sim T \frac{d}{dT} V_A - T \frac{d}{dT} V_B \rightarrow \alpha$ Nucleation Rate : $\Gamma \sim A e^{-S_3/T} \rightarrow \beta$

Effective field-theory to the rescue: Dimensional reduction

Phase transitions in a nutshellEffective mass:
$$m_{eff}^2 = (m^2 + \underbrace{aT^2}_{Thermal Mass}) \ll m^2$$
Fine-tuning $\Rightarrow \underbrace{bT^2}_{2-loop Mass} \approx m_{eff}^2$ RG $\Rightarrow \mu \frac{d}{d\log\mu} m_{eff}^2 \approx m_{eff}^2$ Logarithms $\Rightarrow \log T^2/m_{eff}^2 \gg 1$ Extreme uncertainties for $\Omega_{GW} \Rightarrow$ Can we trust theoretical calculations?

Solution: Integrate out $E \sim T$ modes (9508379,2104.04399) No more large logs: $\log T^2/m_{eff}^2 \rightarrow \underbrace{\log T^2/\mu^2}_{Match at \mu \sim T} + \underbrace{\log \mu^2/m_{eff}^2}_{RG-evolution in the EFT}$ Two-loop thermal masses \rightarrow From matching \checkmark Thermally resummed couplings \rightarrow From matching \checkmark Simpler calculations $V_{1-\text{Loop}} \rightarrow -m_{eff}^3$, $V_{2-\text{Loop}} \rightarrow \log \mu^2/m_{eff}^2 + m_{eff}^2 \checkmark$ Get the high-temperature EFT in Mathematica within seconds! https://github.com/DR-algo/DRalgo (2205.08815)

DRalgo : Automatic matching to two loops

- ightarrow Two-loop thermal masses \checkmark
- ightarrow Two-loop Debye masses \checkmark
- \rightarrow One-loop thermal couplings \checkmark
- ightarrow Two-loop effective potential \checkmark
- ightarrow Beta functions at T=0 🗸
- ightarrow Beta functions in the effective theory \backsim

How does it work? (see Tuomas' talk)

Calculate effective couplings Calculate 3d effective potential Calculate 3d nucleation rate

Calculate latent heat

Calculate phase-transition duration

$$\begin{array}{l} \rightarrow \lambda_{\rm eff}(T), m_{\rm eff}^2(T), \dots \\ \rightarrow V_{\rm eff}^{3d}(\phi) \rightarrow T_c \\ \rightarrow \Gamma \sim e^{-S_3} \rightarrow T_N \\ \rightarrow \alpha \propto \frac{d}{dT} V_{\rm eff}^{3d} = \frac{d\lambda_{\rm eff}}{dT} \frac{dV_{\rm eff}^{3d}}{d\lambda_{\rm eff}} + \dots \\ \rightarrow \beta \propto \frac{d}{dT} S_3 = \frac{d\lambda_{\rm eff}}{dT} \frac{dS_3}{d\lambda_{\rm eff}} + \dots \end{array} \right\} \Omega_{\rm GW}$$

Radiative barriers in the High-T EFT (2205.0724)

Barrier from vector bosons

$$V_{\text{tree}}(\phi) = \frac{1}{2}m_3^2\phi^2 + \frac{1}{4}\lambda_3\phi^4 \rightarrow V_{\text{LO}}(\phi) = \frac{1}{2}m_3^2\phi^2 - \frac{1}{16\pi}g_3^3\phi^3 + \frac{1}{4}\lambda_3\phi^4$$
$$m_A^2 \sim g_3^2, \quad m_H \sim \lambda_3 \implies \text{Only consistent if } \frac{m_H^2}{m_A^2} \sim x \ll 1$$

The expansion is in powers of *x*—From lattice: continuous transition if $x \ge 0.1$ Integrating out vectors bosons at 2-loops give V_{NLO} Scalar-loop contribution appear first at NNLO

6 of 16

Strict perturbative expansion

Rewriting the potential with dimensionless variables

$$V_{\text{LO}}(\phi) = \frac{1}{2}y\phi^2 - \frac{1}{16\pi}\phi^3 + \frac{1}{4}x\phi^4, \quad x = \frac{\lambda_3}{g_3^2}, \quad y = \frac{m_3^2}{g_3^4}$$

Symmetric minima: $\phi_{\text{s}} = 0$ Broken minima $\phi_{\text{b}} \sim x^{-1} \neq 0$

How do we consistently include higher orders?

Minima coincide when $\Delta V(x, y_c) \equiv V_{LO}(\phi_b) - V_{LO}(\phi_s) = 0 \implies$ Critical mass y_c Consistent expansion: $\phi_b = \phi_{LO} + x \phi_{NLO} + ... \implies$ Gauge invariance Critical mass: $y_c = y_{LO} + x y_{NLO} + ... \implies$ Exact RG-invariance at every order Observables: $\frac{d}{dy} \Delta V(x, y_c) \equiv \Delta \langle \Phi^{\dagger} \Phi \rangle, \quad \frac{d}{dx} \Delta V(x, y_c) \equiv \Delta \langle (\Phi^{\dagger} \Phi)^2 \rangle$

Comparison with Lattice (data from 2205.07238)

$$\begin{split} \Delta \left< \Phi^{\dagger} \Phi \right> &= \frac{1 + \frac{51}{2} x + 13\sqrt{2} x^{3/2}}{2(8\pi x)^2} \\ \Delta \left< (\Phi^{\dagger} \Phi)^2 \right> &= \frac{1 + 51 x + 14\sqrt{2} x^{3/2}}{4(8\pi x)^4}. \end{split}$$

Latent heat:
$$L \approx 4 \times \Delta \langle \Phi^{\dagger} \Phi \rangle$$

Large corrections from NLO NNLO correction under control

Result for the critical mass

$$y_c = \frac{1 - \frac{51}{2} x \log \tilde{\mu}_3 - 2\sqrt{2x^{3/2}}}{2(8\pi)^2 x}$$

Expect expansion to fail when $y_c \approx 0$

0 10

- 4

Radiative corrections to the nucleation rate

 $S_{NLO} \sim R^3$ and $S_{LO} \sim R^2$ \rightarrow Trouble with large bubbles Corrections to the bounce are important

Functional determinant

 $S_{\text{NLO}} = \frac{1}{2} \sum_{i} \text{Tr} \log \left[-\nabla^2 + M_i^2 [\phi_B] \right] \rightarrow \text{Calculate numerically}$ Straightforward to calculate in the effective theory

Recent lattice results for a radiative barrier in 2205.07238

Example: Dimension-6 operator

$$\begin{split} V(\phi) &= \frac{1}{2}m_3^2\phi^2 - \frac{1}{4}\lambda_3\phi^4 + \frac{1}{32}c_6\phi^6, \quad y = \frac{m_3^2}{\lambda_3^2} \\ S_{\text{eff}}(y_N) &= S_{\text{LO}} + S_{\text{NLO}} = 126 \implies \text{Nucleation mass } y_N \\ \beta_N/H_N &\sim \tilde{\beta} = \frac{d}{dy}S_{\text{eff}}(y_N) \text{--Observable in the effective 3d theory} \end{split}$$

Results for $\tilde{\beta}$ (2205.05145)

Summary

The Electroweak phase transition is a hot topic

- \rightarrow Uncertainties for common methods span orders of magnitude
- \rightarrow High-temperature effective theory key to reduce RG-scale dependence
- \rightarrow EFT construction has been automatized
- \rightarrow Calculations simpler in the EFT

Strict perturbative expansions are simple and consistent

- \rightarrow 3-loop corrections straightforward to include for the effective potential
- \rightarrow 1-loop corrections straightforward to include for the nucleation rate

Robust methods are needed for accurate predictions

Thank You

Backup slides

DRalgo example: Standard-Model with nF fermion families

Effective Couplings: Lb, Lf $\sim \log \mu / T$ (matching scale $\mu \sim T$)

One-loop scalar masses

$$Out[*] = \left\{ m23d \to \frac{1}{16} T^2 \left(3 gw^2 + gY^2 + 8 \lambda 1H + 4 yt^2 \right) + m2 \right\}$$

Two-loop Debye masses

$$\begin{aligned} \text{Out[*]} &= & \left\{ \mu \text{sqSU2} \rightarrow \frac{\text{gw}^2 \left(T^2 \left(\text{gw}^2 \left(86 \text{ Lb} \left(2 \text{ nF} + 5 \right) - 32 \left(\text{Lf} - 1 \right) \text{nF}^2 + (44 - 80 \text{ Lf} \right) \text{nF} + 207 \right) - 3 \left(6 \left(8 \text{ gs}^2 \text{ nF} - 4 \lambda 1 \text{H} + \text{yt}^2 \right) + \text{gY}^2 \left(4 \text{ nF} - 3 \right) \right) \right) + 144 \text{ m2} \right)}{1152 \pi^2}, \\ & \mu \text{sqSU3} \rightarrow \frac{\text{gs}^2 T^2 \left(4 \text{ gs}^2 \left(33 \text{ Lb} \left(\text{nF} + 3 \right) + \text{nF} \left(-4 \text{ Lf} \left(\text{nF} + 3 \right) + 4 \text{ nF} + 3 \right) + 45 \right) - 27 \text{ gw}^2 \text{ nF} - 11 \text{ gY}^2 \text{ nF} - 36 \text{ yt}^2 \right)}{576 \pi^2}, \\ & \mu \text{sqU1} \rightarrow -\frac{\text{gY}^2 \left(T^2 \left(18 \left(88 \text{ gs}^2 \text{ nF} - 36 \lambda 1 \text{H} + 33 \text{ yt}^2 \right) + 81 \text{ gw}^2 \left(4 \text{ nF} - 3 \right) + \text{gY}^2 \left(6 \text{ Lb} \left(10 \text{ nF} + 3 \right) + 800 \left(\text{Lf} - 1 \right) \text{ nF}^2 + 60 \left(4 \text{ Lf} + 17 \right) \text{ nF} - 45 \right) \right) - 1296 \text{ m2} \right)}{10 368 \pi^2}. \end{aligned}$$

16 of 16