New methods for studying the Electroweak phase transition

Andreas Ekstedt DESY

II. Institut für Theoretische Physik

Strong and Electroweak Matter 2022, June 22
Talk based on 2205.08815, 2205.07241, and 2205.05145

Why care about phase transitions?

First-order phase transition \Longrightarrow Electroweak Baryogenesis?

Baryon asymmetry

$$
\frac{n_{B}-n_{\bar{B}}}{n_{\gamma}} \approx \underbrace{6 \times 10^{-10}}_{\text {Observation }} \gg \underbrace{10^{-20}}_{\text {Prediction }}
$$

Gravitational Waves \Longrightarrow Need accurate calculations
A classic tale about a hot topic
$\left.\begin{array}{ll}\text { Effective Potential : } L \sim T \frac{d}{d T} V_{A}-T \frac{d}{d T} V_{B} & \rightarrow \alpha \\ \text { Nucleation Rate : } \Gamma \sim A e^{-S_{3} / T} & \rightarrow \beta\end{array}\right\} \Omega_{\mathrm{GW}}$

Effective field-theory to the rescue: Dimensional reduction

Phase transitions in a nutshell

Effective mass:

$$
\begin{aligned}
& m_{\mathrm{eff}}^{2}=(m^{2}+\underbrace{a T^{2}}_{\text {Thermal Mass }}) \ll m^{2} \\
& \mathrm{RG} \Longrightarrow \mu \frac{d}{d \log \mu} m_{\mathrm{eff}}^{2} \approx m_{\mathrm{eff}}^{2}
\end{aligned}
$$

Extreme uncertainties for $\Omega_{\mathrm{GW}} \Longrightarrow$ Can we trust theoretical calculations?
Solution: Integrate out $E \sim T$ modes $(9508379,2104.04399)$
No more large logs: $\log T^{2} / m_{\text {eff }}^{2} \rightarrow \underbrace{\log T^{2} / \mu^{2}}_{\text {Match at } \mu \sim T}+\underbrace{\log \mu^{2} / m_{\text {eff }}^{2}}_{\text {RG-evolution in the EFT }}$
Two-loop thermal masses \rightarrow From matching
Thermally resummed couplings \rightarrow From matching
Simpler calculations $V_{1-\text { Loop }} \rightarrow-m_{\text {eff }}^{3}, \quad V_{2-\text { Loop }} \rightarrow \log \mu^{2} / m_{\text {eff }}^{2}+m_{\text {eff }}^{2}$

Get the high-temperature EFT in Mathematica within seconds! https://github.com/DR-algo/DRalgo (2205.08815)

DRalgo: Automatic matching to two loops

\rightarrow Two-loop thermal masses
\rightarrow Two-loop Debye masses
\rightarrow One-loop thermal couplings
\rightarrow Two-loop effective potential
\rightarrow Beta functions at $T=0$
\rightarrow Beta functions in the effective theory

How does it work? (see Tuomas' talk)

Calculate effective couplings
Calculate 3d effective potential
Calculate 3d nucleation rate
Calculate latent heat
Calculate phase-transition duration $\left.\quad \rightarrow \beta \propto \frac{d}{d T} S_{3}=\frac{d \lambda_{\text {eff }}}{d T} \frac{d S_{3}}{d \lambda_{\text {eff }}}+\ldots \quad\right)$

$$
\rightarrow \lambda_{\mathrm{eff}}(T), m_{\mathrm{eff}}^{2}(T), \ldots
$$

$$
\rightarrow V_{\text {eff }}^{3 d}(\phi) \rightarrow T_{c}
$$

$$
\rightarrow \Gamma \sim e^{-S_{3}} \rightarrow T_{N}
$$

$$
\rightarrow \alpha \propto \frac{d}{d T} V_{\mathrm{eff}}^{3 d}=\frac{d \lambda_{\mathrm{eff}}}{d T} \frac{d V_{\mathrm{eff}}^{3 d}}{d \lambda_{\mathrm{eff}}}+\ldots
$$

$$
\Omega_{\mathrm{GW}}
$$

$$
\rightarrow \beta \propto \frac{d}{d T} S_{3}=\frac{d \lambda_{\text {eff }}}{d T} \frac{d S_{3}}{d \lambda_{\text {eff }}}+\ldots
$$

Radiative barriers in the High-T EFT (2205.0724)

Barrier from vector bosons

$$
\begin{aligned}
& V_{\text {tree }}(\phi)=\frac{1}{2} m_{3}^{2} \phi^{2}+\frac{1}{4} \lambda_{3} \phi^{4} \rightarrow V_{\mathrm{LO}}(\phi)=\frac{1}{2} m_{3}^{2} \phi^{2}-\frac{1}{16 \pi} g_{3}^{3} \phi^{3}+\frac{1}{4} \lambda_{3} \phi^{4} \\
& m_{A}^{2} \sim g_{3}^{2}, \quad m_{H} \sim \lambda_{3} \Longrightarrow \text { Only consistent if } \frac{m_{H}^{2}}{m_{A}^{2}} \sim x \ll 1
\end{aligned}
$$

The expansion is in powers of x-From lattice: continuous transition if $x \gtrsim 0.1$ Integrating out vectors bosons at 2-loops give $V_{\text {NLO }}$
Scalar-loop contribution appear first at NNLO

Strict perturbative expansion

Rewriting the potential with dimensionless variables

$$
V_{\mathrm{LO}}(\phi)=\frac{1}{2} y \phi^{2}-\frac{1}{16 \pi} \phi^{3}+\frac{1}{4} x \phi^{4}, \quad x=\frac{\lambda_{3}}{g_{3}^{2}}, \quad y=\frac{m_{3}^{2}}{g_{3}^{4}}
$$

Symmetric minima: $\phi_{\mathrm{s}}=0 \quad$ Broken minima $\phi_{\mathrm{b}} \sim x^{-1} \neq 0$
How do we consistently include higher orders?
Minima coincide when $\Delta V\left(x, y_{c}\right) \equiv V_{\mathrm{LO}}\left(\phi_{\mathrm{b}}\right)-V_{\mathrm{LO}}\left(\phi_{\mathrm{s}}\right)=0 \Longrightarrow$ Critical mass y_{c} Consistent expansion: $\phi_{b}=\phi_{\mathrm{LO}}+x \phi_{\mathrm{NLO}}+\ldots \Longrightarrow$ Gauge invariance
Critical mass: $y_{C}=y_{\mathrm{LO}}+x y_{\mathrm{NLO}}+\ldots \Longrightarrow$ Exact RG-invariance at every order Observables: $\frac{d}{d y} \Delta V\left(x, y_{c}\right) \equiv \Delta\left\langle\Phi^{\dagger} \Phi\right\rangle, \quad \frac{d}{d x} \Delta V\left(x, y_{c}\right) \equiv \Delta\left\langle\left(\Phi^{\dagger} \Phi\right)^{2}\right\rangle$

Comparison with Lattice (data from 2205.07238)

$\Delta\left\langle\Phi^{\dagger} \phi\right\rangle=\frac{1+\frac{51}{2} x+13 \sqrt{2} x^{3 / 2}}{2(8 \pi x)^{2}}$
$\Delta\left\langle\left(\Phi^{\dagger} \Phi\right)^{2}\right\rangle=\frac{1+51 x+14 \sqrt{2} x^{3 / 2}}{4(8 \pi x)^{4}}$.
Latent heat: $L \approx 4 \times \Delta\left\langle\Phi^{\dagger} \Phi\right\rangle$

Large corrections from NLO NNLO correction under control

Result for the critical mass

$$
y_{c}=\frac{1-\frac{51}{2} x \log \tilde{\mu_{3}}-2 \sqrt{2} x^{3 / 2}}{2(8 \pi)^{2} x}
$$

Expect expansion to fail when $y_{c} \approx 0$

Radiative corrections to the nucleation rate

Functional determinant

$S_{\text {NLO }}=\frac{1}{2} \sum_{i} \operatorname{Tr} \log \left[-\nabla^{2}+M_{i}^{2}\left[\phi_{B}\right]\right] \rightarrow$ Calculate numerically
Straightforward to calculate in the effective theory
Recent lattice results for a radiative barrier in 2205.07238

Example: Dimension-6 operator

$$
\begin{aligned}
& V(\phi)=\frac{1}{2} m_{3}^{2} \phi^{2}-\frac{1}{4} \lambda_{3} \phi^{4}+\frac{1}{32} c_{6} \phi^{6}, \quad y=\frac{m_{3}^{2}}{\lambda_{3}^{2}} \\
& S_{\text {eff }}\left(y_{N}\right)=S_{\text {LO }}+S_{\text {NLO }}=126 \Longrightarrow \text { Nucleation mass } y_{N} \\
& \beta_{N} / H_{N} \sim \tilde{\beta}=\frac{d}{d y} S_{\text {eff }}\left(y_{N}\right) \text {-Observable in the effective 3d theory }
\end{aligned}
$$

Results for $\tilde{\beta}$ (2205.05145)

Calculating 1-loop corrections are not only doable, but straightforward

Summary

The Electroweak phase transition is a hot topic
\rightarrow Uncertainties for common methods span orders of magnitude
\rightarrow High-temperature effective theory key to reduce RG-scale dependence
\rightarrow EFT construction has been automatized
\rightarrow Calculations simpler in the EFT
Strict perturbative expansions are simple and consistent
\rightarrow 3-loop corrections straightforward to include for the effective potential
\rightarrow 1-loop corrections straightforward to include for the nucleation rate
Robust methods are needed for accurate predictions

Thank You

Backup slides

DRalgo example: Standard-Model with nF fermion families

Effective Couplings: Lb, Lf $\sim \log \mu / T$ (matching scale $\mu \sim T$)

$$
\begin{aligned}
& \left\{\mathrm{gw} 3 \mathrm{~d}^{2} \rightarrow \frac{\mathrm{gw}^{4} T(43 \mathrm{Lb}-8 \mathrm{LfnF}+4)}{96 \pi^{2}}+\mathrm{gw}^{2} T,{\mathrm{gY} 3 \mathrm{~d}^{2}} \rightarrow \mathrm{gY}^{2} T-\frac{\mathrm{gY}}{}{ }^{4} T(3 \mathrm{Lb}+40 \mathrm{LfnF}),{\mathrm{gs} 3 \mathrm{~d}^{2}}_{288 \pi^{2}} \rightarrow \frac{\mathrm{gs}^{4} T(33 \mathrm{Lb}-4 \mathrm{LfnF}+3)}{48 \pi^{2}}+\mathrm{gs}^{2} T,\right. \\
& \left.\left.\left.\lambda 1 \mathrm{H} 3 \mathrm{~d} \rightarrow \frac{T\left(2 4 \lambda 1 \mathrm { H } \left(3 \mathrm{gw}^{2} \mathrm{Lb}+\mathrm{gY}^{2} \mathrm{Lb}-4 \mathrm{Lf} \mathrm{yt}\right.\right.}{}{ }^{2}\right)+(2-3 \mathrm{Lb})\left(3 \mathrm{gw}^{4}+2 \mathrm{gw}^{2} \mathrm{gY}^{2}+\mathrm{gY}^{4}\right)+256 \pi^{2} \lambda 1 \mathrm{H}-192 \lambda 1 \mathrm{H}^{2} \mathrm{Lb}+48 \mathrm{Lf} \mathrm{yt}^{4}\right)\right\}
\end{aligned}
$$

One-loop scalar masses

$$
\left\{\mathrm{m} 23 \mathrm{~d} \rightarrow \frac{1}{16} T^{2}\left(3 \mathrm{gw}^{2}+\mathrm{gY} \mathrm{Y}^{2}+8 \lambda 1 \mathrm{H}+4 \mathrm{yt}^{2}\right)+\mathrm{m} 2\right\}
$$

Two-loop Debye masses

$$
\begin{aligned}
\{\mu \mathrm{sqSU} 2 & \rightarrow \frac{\mathrm{gw}^{2}\left(T^{2}\left(\mathrm{gw}^{2}\left(86 \mathrm{Lb}(2 \mathrm{nF}+5)-32(\mathrm{Lf}-1) \mathrm{nF}^{2}+(44-80 \mathrm{Lf}) \mathrm{nF}+207\right)-3\left(6\left(8 \mathrm{gs}^{2} \mathrm{nF}-4 \lambda 1 \mathrm{H}+\mathrm{yt}^{2}\right)+\mathrm{gY}{ }^{2}(4 \mathrm{nF}-3)\right)\right)+144 \mathrm{~m} 2\right)}{1152 \pi^{2}}, \\
\mu \mathrm{sqSU} 3 & \rightarrow \frac{\mathrm{gs}^{2} T^{2}\left(4 \mathrm{gs}^{2}(33 \mathrm{Lb}(\mathrm{nF}+3)+\mathrm{nF}(-4 \mathrm{Lf}(\mathrm{nF}+3)+4 \mathrm{nF}+3)+45)-27 \mathrm{gw}^{2} \mathrm{nF}-11 \mathrm{gY}^{2} \mathrm{nF}-36 \mathrm{yt}^{2}\right)}{576 \pi^{2}}, \\
\mu \mathrm{sqU} 1 & \left.\rightarrow-\frac{\mathrm{gY}^{2}\left(T^{2}\left(18\left(88 \mathrm{gs}^{2} \mathrm{nF}-36 \lambda 1 \mathrm{H}+33 \mathrm{yt}^{2}\right)+81 \mathrm{gw}^{2}(4 \mathrm{nF}-3)+\mathrm{gY}^{2}\left(6 \mathrm{Lb}(10 \mathrm{nF}+3)+800(\mathrm{Lf}-1) \mathrm{nF}^{2}+60(4 \mathrm{Lf}+17) \mathrm{nF}-45\right)\right)-1296 \mathrm{~m} 2\right)}{10368 \pi^{2}}\right\}
\end{aligned}
$$

