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Topic of this Talk

Question of the day:
How can we use transport in neutron star mergers to study the QCD phase diagram ?

Answer:
▶ Build better gravitational wave detectors
▶ Improve microscopic physics in merger simulations
▶ Focus on weak interactions
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Motivation

Ultimate goal:
Understanding the phase diagram of fundamental matter as described by QCD using
gravitational waves from neutron star mergers
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Gravitational Waves
Detection requires simulations

▶ BNS (inspiral) can be detected with current detectors (GW170817 and GW190425)
▶ Signal very noisy - requires simulation of wave form
▶ Simulations provide us thermodynamic input

B. P. Abbott et al. (LIGO and Virgo Collaboration)
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Neutron Star Merger

Hanauske, M.; Steinheimer, J. et al. Particles 2019

▶ Merger test properties of dense matter at high densities (up to ≈ 4 nsat) and high
temperatures (up to T ≈ 60 − 80 MeV)

▶ If we want to use mergers to learn about nuclear matter, we need to include all the relevant
physics in our simulations.
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Neutron Star Merger
Thermodynamic environment

Alford, Bovard et.al., PRL 120 (2018)

▶ Significant spatial and temporal variation in
▶ temperature → thermal conductivity
▶ fluid flow velocity → shear viscosity
▶ density → bulk viscosity
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Transport Properties in Mergers
Better discriminator of different phases than EOS

Premise
The important dissipation mechanisms are the ones whose equilibration time is ≲ 20ms

Estimates for transport properties: Alford, Bovard, et.al. PRL 120 (2018)

▶ Thermal transport: important if
▶ neutrinos are trapped (T > 5 MeV)
▶ there are short-distance temperature gradients on ≈ 0.1 km scale

▶ Shear viscosity similar conclusion
▶ Bulk viscosity potentially important: large enough for significant damping of oscillations in

millisecond time-range?
Weak interaction involved in all of these!
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Bulk Viscosity
"Compression dissipation"

▶ Bulk viscosity in mergers driven by weak interactions (strong and electromagnetic too fast)
▶ Weak interactions equilibrate particle content

Results:
▶ Nuclear bulk viscosity in neutrino-transparent matter (T ≲ 5 MeV):

Alford, Harris, Phys.Rev. C100 (2019): millisecond damping times
▶ Nuclear bulk viscosity in neutrino-trapped matter (T ≳ 10 MeV):

Alford, Harutyunyan, Sedrakian Phys.Rev.D100 (2019): rates too fast → low bulk viscosity
▶ Hyperon bulk viscosity for non-leptonic processes : Alford, A.H. PRC 103 (2021)

▶ millisecond damping times only at keV temperatures
▶ Hyperonic rates at higher temperatures too fast for sizeable bulk viscosity
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So what do we need?

Microscopical model for nuclear matter Better understanding of weak processes
valid at wide density and temperature range
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New Model for Nuclear Matter
Alford, Brodie, A.H., Tews: arXiv:2205.10283

Relativistic mean field theories:
Based on meson-exchange Lagrangians:
nucleons interact via meson exchange

✓ Applicable to density/temperature range of NS mergers
✓ Fully relativistic model → always causal
✓ Provide microscopical model: dispersion relations, . . .

Coupling constants: fit to saturation properties of (nearly) symmetric nuclear matter

Neutron stars are ≈ 90% neutrons!
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Data for Pure Neutron Matter?
Chiral Perturbation Theory

Chiral perturbation theory χPT:
Effective field theory for nucleons guided by
symmetries of QCD

✓ Controlled approximation
✓ Can compute pure neutron matter
✗ Only T = 0 and valid up to nB ≈ 2n0

Pure Neutron Matter
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QMC-RMFx EOS
Four Models

▶ Simultaneous fit to χPT- pure
neutron matter and
phenomenological model for
symmetric matter

▶ Four different models:
QMC-RMFx

▶ From soft to stiff
▶ Pressure = slope
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QMC-RMFx EOS II
Mass-Radius Curves

▶ Within 2σ of PSR J0740+6620:
M = 2.072 ± 0.066 M⊙

▶ consistent with NICER
R1.34 = 12.71 ± 1.84 km

▶ consistent with
NICER+XMM+multi messenger
constraints from P. T. H. Pang, I. Tews,
M. W. Coughlin, M. Bulla, C. Van Den
Broeck, and T. Dietrich, Astrophys. J. 922,
14 (2021)
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Beta Equilibrium

beta equilibrium: neutron decay and electron capture balance
n + · · · → p + e− + . . . p + e− + · · · → n + · · ·

▶ Above T ≳ 10 MeV, neutrinos are trapped
▶ In this part: work in neutrino free-streaming regime

If rates balance and are inverse to each other:

cold beta equilibrium correct at T = 0: detailed balance
µn = µp + µe

? Still valid at moderate, finite temperatures ?
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Urca Processes
Weak semi-leptonic decays in dense matter

direct Urca (dU)
neutron decay: n → p + e− + ν̄e electron capture: p + e− → n + νe

▶ Strongly degenerate matter:
dominated by particles on their Fermi surface (FS)

▶ Momentum conservation on FS
demands k⃗Fn ≤ k⃗Fp + k⃗Fe

▶ If momentum cons. on FS not
possible: rate heavily suppressed

Alexander Haber | Washington University in Saint Louis
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Urca Processes
Weak semi-leptonic decays in dense matter

direct Urca (dU)
neutron decay: n → p + e− + ν̄e electron capture: p + e− → n + νe

▶ Momentum conservation on FS demands k⃗Fn ≤ k⃗Fp + k⃗Fe

▶ If momentum cons. on FS not possible: rate heavily suppressed

modified Urca (mU): dU with spectator
neutron decay: n + N → p + e− + ν̄e + N electron capture p + e− + N → n + νe + N
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Direct Urca Threshold
minimum density for dU on FS

direct Urca threshold:
kFn = kFp + kFe

▶ dU requires higher proton fraction
▶ Nearly all equation of states (EOS) have

monotonically rising proton fraction with nB

▶ IUF: direct Urca threshold at nB ≈ 4.1n0 SFHo

IUF dUIUF-thr.
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Total Urca in Cold Beta-Equilibrium
T = 3 MeV - neutrino transparent
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▶ IUF-results show clear dU threshold
▶ Electron-capture and neutron-decay differ

by 1 − 2 orders of magnitude
▶ Cold beta-equlibrium clearly violated

Reason:
electron-capture and neutron-decay are not inverse processes: neutrino switches side
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Warm Beta Equilibrium
Alford, Harris PRC 98 (2018), Alford, A.H., Harris, Zhang, arXiv:2108.03324

Warm Beta Equilibrium
µn = µp + µe +∆µ(nB) where ∆µ(nB) is chosen s.t. Γnd = Γec
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Corrected Rates: ∆µ included
for IUF EOS at T = 3 MeV
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Summary

What did you (hopefully) learn today?

▶ Merger and transport phenomena can help us studying the QCD phase diagram
▶ We need to improve the microphysics in simulations
▶ Microscopic models of nuclear matter are necessary for transport calculations
▶ We improve RMFs by fitting them to pure neutron matter calculations from χPT

▶ Traditional beta-equilibrium is violated for temperatures in the few MeV range

Thank you for your attention!
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Urca Processes
Can we improve on the Urca calculations?

✗ Direct and modified Urca are normally treated separately
✗ In-medium nature of decay mostly ignored in matrix element

(only effective mass taken into account)
✗ Modified Urca normally computed in FS approximation with crude approximation of internal

nucleon propagator
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Direct Urca and Modified Urca Matrix Element
Approximations for internal propagator

direct Urca

modified Urca

Propgator for off-shell nucleon
How to deal with propagator Gn for internal, off-shell nucleon?
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Direct Urca and Modified Urca
T = 1 MeV - neutrino transparent, IUF-EOS
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standard approximation for mU:
Gn = 1/µe
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Modified Urca Improved in Shternin et al. 2018
Divergent rate?

mU-vac.prop.

mU-std.appr.
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✓ Improved treatment: G−1
n ∝

(
E2 − ε2

N(k)
)

✗ Divergence at dU threshold
✗ Internal nucleon goes on shell!
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Direct Urca + Modified Urca Unified
Treat incoming neutron as particle with finite width
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▶ Incoming neutron with finite width

γn due to strong interaction (pion -
nucleon nucleon-hole loop)

▶ γn ≈ 0.1 MeV (FSA calculation)
✓ Includes direct and modified Urca
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Why is this interesting?

▶ Unified, consistent approach to modified and direct Urca
▶ Allows us to go beyond Fermi-surface for mU (first time)
▶ Matrix element for unified approach in future calculation from χPT :

▶ Full in-medium nature of decay can be taken into account
▶ Most complete modified Urca calculation imaginable

▶ Can affect cooling in proto neutron stars, bulk viscosity in mergers, ...
▶ Very much work in progress
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dU via Self-energy Calculation
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mU via Self-energy Calculation
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Total Urca in Cold Beta-Equilibrium
T = 3 MeV - neutrino transparent
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▶ IUF-results show clear dU threshold
▶ Electron-capture and neutron-decay differ

by 1 − 2 orders of magnitude
▶ Cold beta-equlibrium clearly violated

Reason:
electron-capture and neutron-decay are not inverse processes: neutrino switches side
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Warm Beta Equilibrium
Alford, Harris PRC 98 (2018), Alford, A.H., Harris, Zhang, arXiv:2108.03324

Warm Beta Equilibrium
µn = µp + µe +∆µ(nB) where ∆µ(nB) is chosen s.t. Γnd = Γec
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Bulk Viscosity
quick reminder

▶ Harmonic compression of nuclear matter with frequency ω

▶ Compression: work done by piston – decompression:
work done by matter ⇒ no net dissipation IF matter is the
same on "way up - way down"

▶ Nuclear matter reacts to pressure change: e.g. change of
proton fraction xp via weak processes
n → p+ + e− + ν̄e and p+ + e− → n + νe

▶ Beta-equilibrium: rates are the same → xp constant
▶ Compression → out of beta equilibrium: reequilibration

time depends on difference of rates ∆Γ
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Nuclear Bulk Viscosity
neutrino trapped vs. free-streeming

▶ Nuclear bulk viscosity in neutrino-transparent matter (T ≲ 5 MeV):
Alford, Harris, Phys.Rev. C100 (2019): millisecond damping times

▶ Nuclear bulk viscosity in neutrino-trapped matter (T ≳ 10 MeV):
Alford, Harutyunyan, Sedrakian Phys.Rev.D100 (2019): rates too fast → low bulk viscosity
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Exotic Matter Bulk Viscosity
Other weak processes

Exotic and Leptonic Matter
▶ Leptonic bulk viscosity: small at low temperatures
▶ Bulk viscosity in quark matter: color-superconductivity
▶ Nuclear bulk viscosity at finite magnetic field or with medium-corrections

Hyperonic Bulk Viscosity
▶ Sizable bulk viscosity in cold matter (e.g. Lindblom, Owen Phys.Rev. D65 (2002))
▶ Even if hyperons non-existent in isolated star: higher densities and temperatures

in merger
→ critical density might be reached
→ thermal population below density onset
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Hyperonic Bulk Viscosity: Equilibration of Strangeness
Alford, A.H. 2009.05181

Contributing processes: change strangeness by 1

(1) n + n ⇔ p+ +Σ− (2) n + p+ ⇔ p+ + Λ (3) n + n ⇔ n + Λ (4) Λ + Λ ⇔ Λ + n
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Strangeness changing rates might play role in local heating + phase conversion dissipation.
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Hyperon Bulk Viscosity II
Calculating the matrix element

Combined weak-strong vertex with one meson exchange (OME) vs. contact interaction

▶ Full momentum dependent matrix element using one meson exchange interaction instead of
contact interaction:
→ significant processes (3+4) can be included (no contact-interaction matrix element)

Phys.Rev.C69 (2004), Phys.Rev.D 100 (2019)
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Beta Equilibrium
Cold vs warm beta equilibrium

▶ Beta-equilibrium = chemical equilibrium: composition of matter (e.g. proton fraction) stays
constant with time

▶ "Chemical composition" (particle fractions) change via weak interactions

beta equilibrium: neutron decay and electron capture balance
n + · · · → p + e− + . . . p + e− + · · · → n + · · ·

▶ Above T ≳ 10 MeV, neutrinos are trapped
▶ In this part: work in neutrino free-streaming regime

If rates balance and are inverse to each other:

cold beta equilibrium: correct at T = 0
µn = µp + µe

? Still valid at moderate, finite temperatures ?
Alexander Haber | Washington University in Saint Louis
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Isolated Neutron Star
Expected composition

A particle physicist’s dream/nightmare
Neutron stars require understanding of
all fundamental interactions

▶ Gravity: formation and stability,
gravitational waves

▶ Electromagnetism: strong magnetic fields,
EM signals

▶ Weak interaction: cooling via neutrino
emissivity, beta equilibrium, bulk viscosity

▶ Strong interaction: pressure of matter,
composition,...

Gendreau et.al., vol. 8443 of Proceedings of SPIE, p. 844313. Sept., 2012.
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What can we measure?

▶ Mass: Best in binary systems via Shapiro delay,
other systems very model dependent

▶ Radii: Hard to measure (nano Arcs), X-ray bursts,
NICER mission, twin stars?

▶ Temperature: Analysis of the electromagnetic spectrum,
cooling from neutrino emissivity (except very old stars)

▶ Rotation frequency: Measurement of Pulsar frequency,
determination of magnetic field possible, pulsar glitches,
r-modes

▶ Gravitational waves: Inspiral detected by advanced
LIGO/VIRGO

Goal: Find particle composition of NS and equation of state (EOS)
Alexander Haber | Washington University in Saint Louis
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Hyperon Rates
Comparison to GM1’B
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Comparison of Rates for Pr. III

▶ GM1’B: first hyperon to appear = Λ−hyperon
▶ onset at higher densities than PK1+H
→ rates are shifted but otherwise show same behavior
→ expect comparable bulk viscosity for different EOS, but at slightly different nB, T
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Why Transport?
The "masquerade problem"

Transport properties are more sensitive to fundamental physics than the EOS

Alford, Braby 2004

Weber, Prog. Part. Nucl. Phys. 54
Alexander Haber | Washington University in Saint Louis



41

GW170817 and GW190425
What have we seen so far?

Radice, D., Bernuzzi, S. Perego, A.,Annu.Rev.Nucl.Part.Sci.70(2020)

▶ Observation of kilonova for GW170817 → short-lived remnant
▶ Tidal deformability Λ̃ < 800
▶ MTOV ≈ 2.17? H0? strong model dependence!
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QMC-PSx EOS
Properties for Symmetric Nuclear Matter

Name nsat E(nsat) κ(nsat) J(nsat) L(nsat)
[fm−3] [MeV] [MeV] [MeV] [MeV]

Fit 0.16 -16 240 - -
QMC-RMF1 0.159 -16.03 258 32.8 44.4
QMC-RMF2 0.160 -16.03 258 32.6 40.4
QMC-RMF3 0.158 -15.99 229 33.7 49.2
QMC-RMF4 0.162 -16.05 275 30.4 31.2
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QMC-RMFx EOS
Properties for Symmetric Nuclear Matter

Name nsat E(nsat) κ(nsat) J(nsat) L(nsat)
[fm−3] [MeV] [MeV] [MeV] [MeV]

Exp. 31.6 ± 3.2 58.7 ± 28.1
QMC-RMF1 0.159 -16.03 258 32.8 44.4
QMC-RMF2 0.160 -16.03 258 32.6 40.4
QMC-RMF3 0.158 -15.99 229 33.7 49.2
QMC-RMF4 0.162 -16.05 275 30.4 31.2
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