Debye mass effects in the dark sector in the Early Universe

Andrii Dashko

with S. Biondini, N. Brambilla, G. Qerimi, A. Vairo
22 June 2022 @ SEWM-22

Outline

- Basic introduction
- Energy hierarchies (non-relativistic and thermal) and suitable EFTs
- Fixed order calculation
- Calculation based on exploiting hierarchy of scales (incl. HTL resummation)
- Dark Matter density evolution
- Conclusions and Future Work

Introduction and motivation

- Look at pairs of non-relativistic particles, which could form bound state:
$U(1): S(\chi \bar{\chi}) \leftrightharpoons B(\chi \bar{\chi})$
$S U(3): S(\chi \bar{\chi})_{8} \leftrightharpoons B(\chi \bar{\chi})_{1}$
when thermal effects are non-negligible Applications:

- Dark matter bound states in early universe plasma
(nucleosynthesis, relic abundances of DM)
- Heavy quarkonium production during heavy ion collision in QGP

Model of the dark sector

$$
\mathcal{L}_{D M}=\bar{X}(i \mid D-m) X-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\sum_{i=1}^{n_{f}} \bar{f}_{k}\left(i \not D-m_{f}\right) f_{k}
$$

- Heavy dark matter fermion
- Dark photons
- Light d.o.f, fermions - enable scale m_{D} to appear

New part (comparing to prev. talk by G. Qerimi)

* Debye mass: $m_{D}^{2}=n_{f} \frac{g^{2} T^{2}}{3}$

Energy scales present

- Two energy scales:
- $T \gg m_{D}$ (thermal)
- $m \gg m v \gg m v^{2}$ (non-relativistic)
- Cosmologically interesting: $m \gg T$; $T \gg m_{D} \sim g T$ (weakly interacting plasma)

- As the Universe expanse, temperature drops:

Freeze-out usually occurs here
To get EFT for a specific energy

Pair description in EFT: NRQED

$$
\begin{aligned}
\mathcal{L}_{D M}= & \bar{X}(i \not D-m) X-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\sum_{i=1}^{n_{f}} \bar{f}_{k}\left(i \not D-m_{f}\right) f_{k} \\
& =\text { Integrating out hard scale } m \gg m \nu \sim p \sim \frac{1}{a_{B}}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{N R Q E D_{D M}} & =\psi^{\dagger}\left(i D_{0}+\frac{\vec{D}^{2}}{2 m}+c_{F} \frac{\vec{\sigma} g \vec{B}}{2 m}+c_{D} \frac{\vec{\Delta} g \vec{E}}{8 m^{2}}+i c_{S} \frac{\vec{D} \times g \vec{E}-g \vec{E} \times \vec{D}}{8 m^{2}}\right) \psi \\
& +\chi^{\dagger}\left(i D_{0}-\frac{\vec{D}^{2}}{2 m}-c_{F} \frac{\vec{\sigma} g \vec{B}}{2 m}+c_{D} \frac{\vec{\Delta} g \vec{E}}{8 m^{2}}+i c_{S} \frac{\vec{D} g \vec{E}-g \vec{E} \vec{D}}{8 m^{2}}\right) \chi \\
& -\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\frac{d_{s}}{m^{2}} F^{\mu \nu} \vec{D}^{2} F_{\mu \nu}+\frac{d_{s}}{m^{2}} \psi^{\dagger} \chi \chi^{\dagger} \psi+\frac{d_{v}}{m^{2}} \psi^{\dagger} \vec{\sigma} \chi \chi^{\dagger} \vec{\sigma} \psi \\
& +\sum_{i=1}^{n_{f}} \bar{f}_{k}\left(i \not D-m_{f}\right) f_{k}+o\left(1 / m^{2}\right) \quad \text { mom } \cdots
\end{aligned}
$$

Pair description in EFT: pNRQED

Integrating out soft scale $m v \gg m v^{2} \sim E$

$$
\left.\begin{array}{l}
\mathcal{L}_{p N R Q E D_{D M}}=\int d \vec{r} \phi^{\dagger}(t, r, R)\left(i \partial_{0}-H\left(r, p, P, s_{1}, s_{2}\right)+g \vec{r} \vec{E}(R, t)\right) \phi(t, r, R)+ \\
\quad+\frac{1}{4} F^{\mu \nu}(R, t) F_{\mu \nu}(R, t)+\mathcal{L}_{\text {lightfermions }}
\end{array}\right\} \begin{aligned}
H\left(r, p, P, s_{1}, s_{2}\right)=\frac{p^{2}}{m}+\frac{P^{2}}{4 m}-\frac{p^{4}}{4 m^{3}}+\mathcal{O}\left(1 / m^{3}\right)+V\left(r, p, P, s_{1}, s_{2}\right) \\
V\left(r, p, P, s_{1}, s_{2}\right)=V^{(0)}+\frac{V^{(1)}}{m}+\frac{V^{(2)}}{m^{2}}+\mathcal{O}\left(1 / m^{3}\right)
\end{aligned}
$$

Thermal field theory in RTF

Key points

- We use Real-Time formalism (i.e. Keldysh contour, double d.o.f., but "usual" Feynman diagram formalism)
- Matrix structure of propagators
- In propagators, there is a thermal part, which put's particles on-shell
$\sim \delta\left(p^{2}-m^{2}\right)$

Bound state formation/dissociation from TFT

- The bound-state formation cross section, could be inferred as (i.e. optical theorem):

$$
\left.\sigma_{B S F} v_{\text {rel }}=<p, l\left|\frac{\Sigma_{S}^{>}}{i}\right| p, l>=-2<p, l\left|\Im_{J}\left[\Sigma_{S}\right]\right| p, l\right\rangle
$$

Self-energy in pNRQED:

$$
\begin{aligned}
& \Sigma_{S / B}=-i g^{2} \int_{0}^{\infty} d t e^{i t\left(p_{0}-h^{(0)}\right)} r^{i} r^{j}\left\langle E^{i}(t, 0) E^{j}(0,0)\right\rangle= \\
= & -i g^{2} \frac{\mu^{4-d}}{d-1} r_{i}^{2} \int \frac{d^{d} q}{(2 \pi)^{d}} \frac{i}{p_{0}-q_{0}-h^{(0)}+i \epsilon}\langle\vec{E}(q) \vec{E}(0)\rangle \\
= & -i g_{d}^{2} \frac{\mu^{4-d}}{d-1} r_{i}^{2} \int \frac{d^{d} q}{(2 \pi)} \frac{i}{p_{0}-q_{0}-h^{(0)}+i \epsilon}\left[q_{0}^{2} D_{i i}(q)+\vec{q}^{2} D_{00}(q)\right]
\end{aligned}
$$

BSF at fixed order*

*in EE propagator

- LO

- NLO (2002.07145 by Binder, Harz et al.)
$\xrightarrow{ }$

Exploiting the large scale separation

- After integrating out scale M and $M v$, we start with $p N R Q E D_{D M}$ at $T=0$

$$
\mathscr{L}_{p N R E F T}=\mathscr{L}_{\text {light }}+\int d^{3} r \phi^{+}\left[\left[\partial_{0}-\hat{h}\right] \phi+\phi^{+} \vec{r} g \vec{E} \phi\right.
$$

- Integrate out scale T

The photon sector is modified to HTL one.

Imaginary correction to self-energy comes from the imaginary part (symmetric) of photon self-energy

$$
\mathfrak{J}\left[\Sigma^{T}\right]=\frac{1}{6} \alpha r_{i}^{2} \operatorname{Tm}_{D}^{2}\left(\frac{1}{\epsilon}+\gamma_{E}-\ln \left(\frac{T}{\pi \mu}\right)+\frac{2}{3}-4 \ln 2-2 \frac{\zeta^{\prime}(2)}{\zeta(2)}\right)
$$

EFT $\left(M \gg M v \gg T \gg m_{D} \gg E\right)$

- Integrate out scale m_{D} in similar way (where the photon propagator is the HTL resummed one)

$$
\mathfrak{\Im}\left[\Sigma^{m_{D}}\right]=-\frac{1}{6} \alpha r_{i}^{2} T m_{D}^{2}\left(\frac{1}{\epsilon}-\gamma_{E}+\ln \left(\frac{\pi \mu^{2}}{m_{D}^{2}}\right)+\frac{5}{3}\right)
$$

- Contribution from scale E is the LO BSF via photon emission

$$
\mathfrak{\Im}\left[\Sigma^{E}\right]=\frac{1}{6} \alpha r_{i}^{2} T m_{D}^{2}\left(4 \frac{\Delta E^{3}}{T m_{D}^{2}}\left(\frac{T}{\Delta E}+\frac{1}{2}\right)\right)
$$

- All-together, we have:

Bound State Formation: Results

Bound State Formation: regions of validity

Dark Matter Density Evolution

Boltzmann equations - as the classic simplification of OQF

$$
\frac{d n_{f}}{d t}+3 H n_{f}=-\left\langle\sigma_{a n n} v_{r e l}\right\rangle\left(n_{f}^{2}-n_{f, e q}^{2}\right)-\sum_{B}\left(\left\langle\sigma_{B S F}^{B} v_{r e l}\right\rangle n_{f}^{2}-\Gamma_{B}^{i o n} n_{B}\right)
$$

$$
\frac{d n_{B}}{d t}+3 H n_{B}=\left\langle\sigma_{l}\right.
$$

$$
\text { Assumptions (1503.07142): } \Gamma_{d e c} \gg H
$$

(Bound states - close to equilibrium)

+ detailed balance equation
+ neglecting (de)excitations

$$
\frac{d n_{f}}{d t}+3 H n_{f}=-\left(\left\langle\sigma_{a n n} v_{r e l}\right\rangle+\sum_{B}\left\langle\sigma_{B S F}^{B} v_{r e l}\right\rangle \frac{\Gamma_{B}^{d e c}}{\Gamma_{B}^{d e c}+\Gamma_{B}^{i o n}}\right)\left(n_{f}^{2}-n_{f, e q}^{2}\right)
$$

Decay and Annihilation

Decay and Annihilation: Directly from $p N R Q E D_{D M}$ Lagrangian (imaginary part)

$$
\delta \mathcal{L}_{p N R Q E D_{D M}}^{a n n i h}=\frac{i}{m^{2}} \int d \vec{r} \phi^{\dagger} \delta(\vec{r})\left(2 \Im\left[d_{s}\right]-\vec{S}^{2}\left(2 \Im\left[d_{s}\right]-2 \Im\left[d_{v}\right]\right)\right) \phi
$$

$$
\begin{gathered}
\left\langle\sigma_{a n n} v_{r e l}\right\rangle=\frac{\operatorname{Im}\left(d_{s}\right)+3 \operatorname{Im}\left(d_{v}\right)}{m^{2}} S\left(\alpha / v_{r e l}\right)=/ L O /=\frac{\alpha^{2} \pi\left(1+n_{f}\right)}{m^{2}} \frac{2 \pi \alpha / v_{r e l}}{1-e^{2 \pi \alpha / v_{r e l}}} \\
\Gamma_{1 S, p d}^{d e c}=\frac{4 \Im\left[d_{s}\right]}{m^{2}}\left|\psi_{100}(0)\right|^{2}=\frac{m \alpha^{5}}{2}+\mathcal{O}\left(\alpha^{6}\right) \\
\Gamma_{1 S, o d}^{d e c}=\frac{4 \Im\left[d_{v}\right]}{m^{2}}\left|\psi_{100}(0)\right|^{2}=\frac{n_{f}}{3} \frac{m \alpha^{5}}{2}+\mathcal{O}\left(\alpha^{6}\right)
\end{gathered}
$$

Dark Matter Density Evolution

Effective cross-section: asymptotic regimes

$$
\left\langle\sigma_{e f f} v_{r e l}\right\rangle=\left\langle\sigma_{a n n} v_{r e l}\right\rangle+\sum_{B}\left\langle\sigma_{B S F}^{B} v_{r e l}\right\rangle \frac{\Gamma_{B}^{d e c}}{\Gamma_{B}^{d e c}+\Gamma_{B}^{i n}}
$$

- Ionisation equilibrium $T \gg E, \Gamma_{i o n} \gg \Gamma_{d e c}$

$$
\left\langle\sigma_{e f f} v_{r e l}\right\rangle \approx\left\langle\sigma_{a n n} v_{r e l}\right\rangle+\sum_{B} \Gamma_{B}^{d e c} \frac{n_{B}^{e q}}{\left(n_{f}^{e q}\right)^{2}}
$$

- $T<E, \Gamma_{d e c} \gg \Gamma_{i o n}$

$$
\left\langle\sigma_{e f f} v_{r e l}\right\rangle \approx\left\langle\sigma_{a n n} v_{r e l}\right\rangle+\sum_{B}\left\langle\sigma_{B S F}^{B} v_{r e l}\right\rangle
$$

Dark Matter Density Evolution

Effective cross-section

$$
\left\langle\sigma_{e f f} v_{r e l}\right\rangle=\left\langle\sigma_{a n n} v_{r e l}\right\rangle+\sum_{B}\left\langle\sigma_{B S F}^{B} v_{r e l}\right\rangle \frac{\Gamma_{B}^{d e c}}{\Gamma_{B}^{d e c}+\Gamma_{B}^{i o n}}
$$

Results: yield

Results: parameters space(s)

Conclusions and Future Work

- The presence of Debye mass scale affects the evolutions of the dark matter in the Early Universe.
- As for NLO contribution, these corrections are more relevant for stronger coupling and larger number of light d.o.f.
- The effects are of the same order as the NLO correction.
- Study the case of $m_{D} \sim E$ in more detail.
- Explore $T \approx m_{D}$ (exactly where we expect the effect to be the strongest).
- Include higher n states.

Thank you for your attention

