

The medium enhanced $g ightarrow c ar{c}$ production

Maximilian Attems Jasmine Brewer, Gian-Michele Innocenti, Aleksas Mazeliauskas, Sohyun Park, Wilke van der Schee, Urs Wiedemann (CERN)

arXiv:2203.11241, arXiv:2206.XXXXX

SEWM 2022

CERN - Large Hadron Collider

Discovery and precisision machine at large scales to understand the most fundamental particles and laws of the universe:

©Wilke van der Schee

"Dass ich erkenne, was die Welt im Innersten zusammenhält" — J. W. von Goethe

- $m_b \sim 4.18 GeV \ m_c \sim 1.27 GeV \ \Lambda_{QCD} \sim 200 MeV$
- short-distance high-momentum transferred
- mass threshold removes many non-perturbative effects
- pQCD can predict the total heavy-flavour (HF) production

"Perturbative" cross-sections in elementary collisions:

- set the yields for heavy-flavour production in heavy-ions
- Quark Gluon Plasma only modifies the p_T distribution of heavy-quarks.
 - M. Cacciari et al., JHEP 10 (2012) 137

Dominant medium-modification of HQ in the QGP

 $m_b \sim 4.18 \, GeV$ $m_c \sim 1.27 \, GeV$ $T_{QGP} \sim 300 \, MeV$ $\Lambda_{QCD} \sim 200 \, MeV$

\rightarrow How?

heavy quarks rescatter inside the QGP

Modification of the parton shower:

 \bullet splitting function $g \to c \bar c$ can be modified by the QGP

 $\tau_{\rm hard} \ll \tau_{g \to c\bar{c}}^{\rm med} \ll \tau_{\rm hadr}$

 \rightarrow enhanced gluon radiation from c and b quarks

\rightarrow Observed experimentally via modification of high- p_T spectra of heavy-flavour hadrons

BDMPS, Nucl.Phys., B484:265–282, 199 B.G. Zakharov, JETP Lett., 63:952–957, 1996.

Y.L. Dokshitzer, D.E Kharzeev, Phys.Lett. B 519, 199-206, 2001

- **g** \rightarrow **c** \bar{c} **splittings** originated in the parton shower of high- p_T gluon jets:
 - long-distance process $\tau_{g \rightarrow c\bar{c}} \gg \tau_{hard}$
 - $g \rightarrow c\bar{c}$ splitting modified by the medium!
- features of the in-medium calculation of splitting function with BDMPS-Z
- One experimental signature for modifications: production in high-p_T jets

See arXiv:2203.11241

Yocotosecond chronometer - formation time

Probing the time structure of the QGP with top quarks:

Distribution of formation time τ_{tot} with a top-quark

Maximum medium quenching end-time τ_m for different colliders

By controlling boost of top quark, you can control time when jets interact with the medium. Gives information in range 0.5fm/c-5fm/c with $p_T < 1TeV$ for FCC. Some info maybe even accessible at HL-LHC with $p_T < 200 GeV$.

L. Apolinário, J. Guilherme, G. Salam, C. Salgado PRL. 120, 232301 (2018)

In-medium $g \rightarrow c\bar{c}$ splitting function in the BDMPS-Z formalism

In-vacuum splitting function to leading order in α_s

$$\left(\frac{1}{Q^2} P_{\bar{g} \to c \, \bar{c}}\right)^{\text{vac}} = \frac{1}{Q^4} \left[\left(m_c^2 + \kappa^2\right) \frac{z^2 + (1-z)^2}{z(1-z)} + 2m_c^2 \right] \,.$$

 $\label{eq:metric} Medium-modification of the splitting function in time-ordered perturbation theory in the close-to-eikonal limit \\ Corrected 2203.11241 v2 to appear, thanks to F. Dominguez, C. Salgado$

$$\begin{pmatrix} \frac{1}{Q^2} P_{g \to c \bar{c}} \end{pmatrix}^{\text{tot}} \equiv \left(\frac{1}{Q^2} P_{g \to c \bar{c}} \right)^{\text{vac}} + \left(\frac{1}{Q^2} P_{g \to c \bar{c}} \right)^{\text{med}}$$

$$= 2 \Re \mathfrak{e} \frac{1}{4 E_g^2} \int_{\mathfrak{t}_{\text{init}}}^{\mathfrak{t}_{\infty}} dt \int_t^{\mathfrak{t}_{\infty}} d\bar{t} \exp \left[i \frac{m_c^2}{2E_g z(1-z)} (t-\bar{t}) \right]$$

$$\times \int d\mathbf{r}_{\text{out}} \exp \left[-\frac{1}{2} \int_{\bar{t}}^{\infty} d\xi \, n(\xi) \, \sigma_3(\mathbf{r}_{\text{out}}, z) \right] \exp \left[-i \, \kappa \cdot \mathbf{r}_{\text{out}} \right]$$

$$\times \left[\left(m_c^2 + \frac{\partial}{\partial \mathbf{r}_{\text{in}}} \cdot \frac{\partial}{\partial \mathbf{r}_{\text{out}}} \right) \frac{z^2 + (1-z)^2}{z(1-z)} + 2m_c^2 \right] \mathcal{K} \left[\mathbf{r}_{\text{in}} = 0, t; \mathbf{r}_{\text{out}}, \bar{t} \right]$$

 $\sigma(r)$: elastic cross section of a medium scattering center interacting with a projectile parton:

transverse rest frame of $c\bar{c}$ pair $(k_{c} + k_{\bar{c}} = 0)$

Related BDMPS-Z works include: L. Apolinario et al., 1407.0599, F. Dominguez et al., 1907.03653, Isaksen et al., 2107.02542, 2206.02811 M. Sievert et al., 1903.06170, S. Caron-Huot&Gale, 1006.2379

From the calculation:

$$\Rightarrow \qquad P_{g \to c\bar{c}}^{med} \sim \mathcal{O}\left(\frac{\langle q^2 \rangle_{med}}{Q^2}\right)$$

From model extraction in central PbPb data: 1 $GeV^2 < \langle q^2 \rangle_{med} = \hat{q}L < 8 \ GeV^2$ (conservative range)

$$\Rightarrow \qquad \left\langle q^{2} \right\rangle_{med} \sim O\left(m_{c}^{2}\right)$$

 $P_{g \to c\bar{c}}^{med} \sim \mathcal{O}\left(\frac{m_c^2}{Q^2}\right) \qquad P_{g \to c\bar{c}}^{vac}(z) = z^2 + (1-z)^2 + 2\frac{m_c^2}{Q^2}$

Medium properties and $g \rightarrow c\bar{c}$ kinematics:

- \hat{q} average squared transverse momentum
- L medium length

 $\langle q^2 \rangle_{med} \sim \hat{q}L$ average squared transverse momentum that a parton acquire in a medium of length *L*:

 $P_{g \to c\bar{c}}^{med}$ has same "magnitude" of the mass term $P_{g \to c\bar{c}}^{vac}$ known to give origin to sizeable effects

 \rightarrow effect of $P_{g\rightarrow c\bar{c}}^{med}$ likely to be relevant

QGP with length L

Enhancement of $g
ightarrow c \bar{c}$ splittings

 $\kappa \rightarrow \, {\rm relative \ transverse \ momentum \ of \ the \ pair}$

increases of κ^2 due to transverse momentum broadening on the individual quarks:

 \rightarrow conserves splitting probability

- \rightarrow Gluons which would not split in vacuum can split if in-medium scatters occurs
- ightarrow increase of a "conserved" and "traceable" quantity via interaction with the medium

- \rightarrow Multiple soft-scattering approximation
- \rightarrow QGP brick with $\hat{q}L = 4GeV^2$

Depletion of low κ^2 splittings due to the in-medium broadening

 \rightarrow the formalism that describes enhanced gluon radiation in the QGP also predicts a sizeable enhancement of the $c\bar{c}$ radiation

High- p_T jets with a pair inside the jet code:

- D-meson reconstruction
 - constraints on the charm-quarks kinematics
 - accessible down to low p_T in heavy-ions

Due to $g\to c\bar{c}$ enhancement, a larger fraction of $D^0\bar{D}^0\text{-tagged}$ jets expected in heavy-ions

 \rightarrow dedicated MC study to provide a first assessment of the feasibility of such measurement

Fully reconstructed hadronic decays

But also $c\bar{c}$ -tagging techniques high- p_T jets or tagging of semi-leptonic charm decays \rightarrow sample \sim entire $c\bar{c}$ statistics

Challenging measurement:

 \rightarrow Based on expected yields, the measurement could be within reach with HL-LHC

 \rightarrow ideal strategy: include all modified splitting functions in the parton shower (currently not available)

 $p_g = p_c + p_{\bar{c}}$

A simplified procedure:

- identify and reconstruct the g
 ightarrow c ar c kinematics in Pythia
- "reweigh" each splitting to accounts for modified $g \to c \bar{c}$ probability

$$w_{g \to c\bar{c}}^{med}\left(E_{g}, \kappa^{2}, z\right) = 1 + \frac{\left(\frac{1}{Q^{2}}P_{g \to c\bar{c}}\right)^{med}\left(E_{g}, \kappa^{2}, z\right)}{\left(\frac{1}{Q^{2}}P_{g \to c\bar{c}}\right)^{\text{vac}}\left(\kappa^{2}, z\right)}$$

This simplified strategy relies on few realistic assumptions/approximations (arXiv:2203.11241) \rightarrow captures the qualitative features of the in-medium modifications

Letter in preparation

Letter in preparation

Reweighed to account for modified $g \rightarrow c\bar{c}$ splitting function: \rightarrow magnitude of the effect likely to increase with more differential observables \rightarrow g \rightarrow $c\bar{c}$ for "in-medium" production of heavy quarks

$g \rightarrow c\bar{c}$ splitting function with BDMPS-Z:

 broadening of cc̄ pairs and enhancement of cc̄ radiation

QGP with length L

Experimental strategy for $g \to c \bar{c}$ enhancement:

 challenging but potentially measurable signal

Push for new theoretical and experimental developments:

- \blacksquare parton showers including the in-medium modi cations of all splitting functions \rightarrow more differential observables
- high-luminosity heavy-ion runs, improved detector capabilities and new analysis techniques

Maximilian Attems Jasmine Brewer Gian Michele Innocenti Aleksas Mazeliauskas Sohyun Park Wilke van der Schee Urs Wiedemann

Thank you for your attention!